Suppr超能文献

利用最小描述长度原理从含噪时间序列对动态系统进行全局重构。

Using the minimum description length principle for global reconstruction of dynamic systems from noisy time series.

作者信息

Molkov Ya I, Mukhin D N, Loskutov E M, Feigin A M, Fidelin G A

机构信息

Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 2):046207. doi: 10.1103/PhysRevE.80.046207. Epub 2009 Oct 15.

Abstract

An alternative approach to determining embedding dimension when reconstructing dynamic systems from a noisy time series is proposed. The available techniques of determining embedding dimension (the false nearest-neighbor method, calculation of the correlation integral, and others) are known [H. D. I. Abarbanel, (Springer-Verlag, New York, 1997)] to be inefficient, even at a low noise level. The proposed approach is based on constructing a global model in the form of an artificial neural network. The required amount of neurons and the embedding dimension are chosen so that the description length should be minimal. The considered approach is shown to be appreciably less sensitive to the level and origin of noise, which makes it also a useful tool for determining embedding dimension when constructing stochastic models.

摘要

提出了一种从含噪时间序列重建动态系统时确定嵌入维数的替代方法。已知确定嵌入维数的现有技术(伪最近邻法、关联积分计算等)效率低下,即使在低噪声水平下也是如此[H. D. I. 阿巴班内尔,(施普林格出版社,纽约,1997年)]。所提出的方法基于构建人工神经网络形式的全局模型。选择所需的神经元数量和嵌入维数,以使描述长度最小。结果表明,所考虑的方法对噪声水平和噪声来源的敏感度明显较低,这使其成为构建随机模型时确定嵌入维数的有用工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验