Institut für Theoretische Physik, Technische Universität Berlin, D-10623 Berlin, Germany.
Phys Rev Lett. 2009 Oct 9;103(15):154102. doi: 10.1103/PhysRevLett.103.154102.
A free-boundary approach is applied to derive universal relationships between the excitability and the velocity and the shape of stabilized wave segments in a broad class of excitable media. In the earlier discovered low excitability limit wave segments approach critical fingers. We demonstrate the existence of a second universal limit (a motionless circular shaped spot) in highly excitable media. Analytically obtained asymptotic relationships and interpolation formula connecting both excitability limits are in good quantitative agreement with results from numerical simulations.
一种自由边界方法被应用于推导广泛的可兴奋介质中兴奋性与速度和稳定波段形状之间的通用关系。在早期发现的低兴奋性极限波段中,波段接近临界指。我们在高兴奋性介质中证明了存在第二个通用极限(静止的圆形斑点)。分析得到的渐近关系和连接两个兴奋性极限的插值公式与数值模拟结果具有良好的定量一致性。