Puig von Friesen M, Verdozzi C, Almbladh C-O
Mathematical Physics and European Theoretical Spectroscopy Facility (ETSF), Lund University, 22100 Lund, Sweden.
Phys Rev Lett. 2009 Oct 23;103(17):176404. doi: 10.1103/PhysRevLett.103.176404.
We study the nonequilibrium dynamics of small, strongly correlated clusters, described by a Hubbard Hamiltonian, by propagating in time the Kadanoff-Baym equations within the Hartree-Fock, second Born, GW, and T-matrix approximations. We compare the results to exact numerical solutions. We find that the time-dependent T matrix is overall superior to the other approximations, and is in good agreement with the exact results in the low-density regime. In the long time limit, the many-body approximations attain an unphysical steady state which we attribute to the implicit inclusion of infinite-order diagrams in a few-body system.
我们通过在哈特里 - 福克、二级玻恩、GW和T矩阵近似下对 Kadanoff - Baym 方程进行时间传播,研究了由哈伯德哈密顿量描述的小的、强关联团簇的非平衡动力学。我们将结果与精确数值解进行比较。我们发现,含时T矩阵总体上优于其他近似,并且在低密度区域与精确结果吻合良好。在长时间极限下,多体近似达到一个非物理的稳态,我们将其归因于在少体系统中隐含地包含了无穷阶图。