Suppr超能文献

一种用于检测抗菌蛋白中活性区域的理论方法。

A theoretical approach to spot active regions in antimicrobial proteins.

机构信息

Dpt, Bioquímica i Biologia Molecular, Fac, Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.

出版信息

BMC Bioinformatics. 2009 Nov 11;10:373. doi: 10.1186/1471-2105-10-373.

Abstract

BACKGROUND

Much effort goes into identifying new antimicrobial compounds able to evade the increasing resistance of microorganisms to antibiotics. One strategy relies on antimicrobial peptides, either derived from fragments released by proteolytic cleavage of proteins or designed from known antimicrobial protein regions.

RESULTS

To identify these antimicrobial determinants, we developed a theoretical approach that predicts antimicrobial proteins from their amino acid sequence in addition to determining their antimicrobial regions. A bactericidal propensity index has been calculated for each amino acid, using the experimental data reported from a high-throughput screening assay as reference. Scanning profiles were performed for protein sequences and potentially active stretches were identified by the best selected threshold parameters. The method was corroborated against positive and negative datasets. This successful approach means that we can spot active sequences previously reported in the literature from experimental data for most of the antimicrobial proteins examined.

CONCLUSION

The method presented can correctly identify antimicrobial proteins with an accuracy of 85% and a sensitivity of 90%. The method can also predict their key active regions, making this a tool for the design of new antimicrobial drugs.

摘要

背景

人们投入了大量精力来寻找能够逃避微生物对抗生素日益增强的耐药性的新型抗菌化合物。一种策略依赖于抗菌肽,这些抗菌肽要么来自蛋白质蛋白水解切割释放的片段,要么是根据已知的抗菌蛋白区域设计的。

结果

为了识别这些抗菌决定因素,我们开发了一种理论方法,该方法除了确定抗菌区域外,还可以从氨基酸序列预测抗菌蛋白。使用高吞吐量筛选测定法报告的实验数据作为参考,为每个氨基酸计算了杀菌倾向指数。对蛋白质序列进行扫描分析,并通过最佳选择的阈值参数识别潜在的活性片段。该方法经过阳性和阴性数据集的验证。这种成功的方法意味着我们可以从大多数经过实验验证的抗菌蛋白的文献中识别出以前报道过的活性序列。

结论

该方法的准确率为 85%,灵敏度为 90%,可以正确识别抗菌蛋白。该方法还可以预测其关键的活性区域,这使其成为设计新型抗菌药物的工具。

相似文献

9
Stepwise identification of potent antimicrobial peptides from human genome.从人类基因组中逐步鉴定强效抗菌肽
Biosystems. 2013 Jul;113(1):1-8. doi: 10.1016/j.biosystems.2013.03.021. Epub 2013 Apr 15.
10
Deep learning improves antimicrobial peptide recognition.深度学习提高抗菌肽识别能力。
Bioinformatics. 2018 Aug 15;34(16):2740-2747. doi: 10.1093/bioinformatics/bty179.

引用本文的文献

6
Novel antimicrobial peptides identified in legume plant, .从豆类植物中鉴定出的新型抗菌肽 。
Microbiol Spectr. 2024 Feb 6;12(2):e0182723. doi: 10.1128/spectrum.01827-23. Epub 2024 Jan 18.

本文引用的文献

3
7
Predicting antibiotic resistance.预测抗生素耐药性。
Nat Rev Microbiol. 2007 Dec;5(12):958-65. doi: 10.1038/nrmicro1796.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验