Suppr超能文献

支持向量回归和最小二乘支持向量回归在抗毒剂量反应曲线拟合中的应用。

Support vector regression and least squares support vector regression for hormetic dose-response curves fitting.

机构信息

Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.

出版信息

Chemosphere. 2010 Jan;78(3):327-34. doi: 10.1016/j.chemosphere.2009.10.029. Epub 2009 Nov 10.

Abstract

Accurate description of hormetic dose-response curves (DRC) is a key step for the determination of the efficacy and hazards of the pollutants with the hormetic phenomenon. This study tries to use support vector regression (SVR) and least squares support vector regression (LS-SVR) to address the problem of curve fitting existing in hormesis. The SVR and LS-SVR, which are entirely different from the non-linear fitting methods used to describe hormetic effects based on large sample, are at present only optimum methods based on small sample often encountered in the experimental toxicology. The tuning parameters (C and p1 for SVR, gam and sig2 for LS-SVR) determining SVR and LS-SVR models were obtained by both the internal and external validation of the models. The internal validation was performed by using leave-one-out (LOO) cross-validation and the external validation was performed by splitting the whole data set (12 data points) into the same size (six data points) of training set and test set. The results show that SVR and LS-SVR can accurately describe not only for the hermetic J-shaped DRC of seven water-soluble organic solvents consisting of acetonitrile, methanol, ethanol, acetone, ether, tetrahydrofuran, and isopropanol, but also for the classical sigmoid DRC of six pesticides including simetryn, prometon, bromacil, velpar, diquat-dibromide monohydrate, and dichlorvos.

摘要

准确描述毒物兴奋效应(Hormesis)剂量-反应曲线(DRC)是确定具有毒物兴奋效应污染物的功效和危害的关键步骤。本研究试图使用支持向量回归(SVR)和最小二乘支持向量回归(LS-SVR)来解决毒物兴奋效应曲线拟合中存在的问题。SVR 和 LS-SVR 完全不同于基于大样本描述毒物兴奋效应的非线性拟合方法,目前仅适用于实验毒理学中经常遇到的小样本最优方法。通过模型的内部和外部验证,获得了确定 SVR 和 LS-SVR 模型的调整参数(SVR 的 C 和 p1,LS-SVR 的 gam 和 sig2)。内部验证通过留一法(LOO)交叉验证进行,外部验证通过将整个数据集(12 个数据点)分成相同大小(6 个数据点)的训练集和测试集进行。结果表明,SVR 和 LS-SVR 不仅可以准确描述由乙腈、甲醇、乙醇、丙酮、乙醚、四氢呋喃和异丙醇组成的七种水溶性有机溶剂的毒物兴奋效应 J 形 DRC,还可以描述六种农药的经典 S 形 DRC,包括西玛津、保灭磷、溴莠定、威霸、二溴酸二溴甲烷和敌敌畏。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验