Suppr超能文献

光能在光合微生物垫生态系统中的转化与守恒。

Conversion and conservation of light energy in a photosynthetic microbial mat ecosystem.

机构信息

Max-Planck Institute for Marine Microbiology, Celsiusstrasse, Bremen, Germany.

出版信息

ISME J. 2010 Mar;4(3):440-9. doi: 10.1038/ismej.2009.121. Epub 2009 Nov 12.

Abstract

Here we present, to the best of our knowledge, the first balanced light energy budget for a benthic microbial mat ecosystem, and show how the budget and the spatial distribution of the local photosynthetic efficiencies within the euphotic zone depend on the absorbed irradiance (J(abs)). Our approach uses microscale measurements of the rates of heat dissipation, gross photosynthesis and light absorption in the system, and a model describing light propagation and conversion in a scattering-absorbing medium. The energy budget was dominated by heat dissipation on the expense of photosynthesis: in light-limiting conditions, 95.5% of the absorbed light energy dissipated as heat and 4.5% was channeled into photosynthesis. This energy disproportionation changed in favor of heat dissipation at increasing irradiance, with >99% of the absorbed light energy being dissipated as heat and <1% used by photosynthesis at J(abs)>700 micromol photon m(-2) s(-1) (>150 J m(-2) s(-1)). Maximum photosynthetic efficiencies varied with depth in the euphotic zone between 0.014-0.047 O(2) per photon. Owing to steep light gradients, photosynthetic efficiencies varied differently with increasing irradiances at different depths in the euphotic zone; for example, at J(abs)>700 micromol photon m(-2) s(-1), they reached around 10% of the maximum values at depths 0-0.3 mm and progressively increased toward 100% below 0.3 mm. This study provides the base for addressing, in much more detail, the photobiology of densely populated photosynthetic systems with intense absorption and scattering. Furthermore, our analysis has promising applications in other areas of photosynthesis research, such as plant biology and biotechnology.

摘要

在这里,我们根据自己的知识水平,首次提出了一个底栖微生物席生态系统的平衡光能预算,并展示了预算以及光区的局部光合效率的空间分布如何取决于吸收辐照度(J(abs))。我们的方法使用了系统中热耗散、总光合作用和光吸收的微观测量值,以及一个描述散射吸收介质中光传播和转换的模型。能量预算主要由热耗散支配,光合作用的代价:在光限制条件下,95.5%的吸收光能量以热的形式耗散,4.5%的吸收光能量被转化为光合作用。随着辐照度的增加,这种能量分配有利于热耗散,在 J(abs)>700µmol 光子 m(-2) s(-1)(>150 J m(-2) s(-1))时,超过 99%的吸收光能量以热的形式耗散,<1%的吸收光能量被光合作用利用。最大光合效率在光区随深度变化,在 0.014-0.047 O(2) 每光子之间。由于光梯度陡峭,在光区不同深度下,光合效率随辐照度的增加而不同;例如,在 J(abs)>700µmol 光子 m(-2) s(-1)时,在 0-0.3mm 深度处达到最大光合效率的 10%左右,并在 0.3mm 以下逐渐增加到 100%。本研究为更详细地研究具有强烈吸收和散射的密集光合作用系统的光生物学提供了基础。此外,我们的分析在光合作用研究的其他领域具有广阔的应用前景,例如植物生物学和生物技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验