Grupo de Biotransformaciones, Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n. 28040 Madrid, Spain.
Acc Chem Res. 2010 Feb 16;43(2):288-99. doi: 10.1021/ar900196n.
The development of efficient syntheses for enantiomerically enriched alpha-hydroxy ketones is an important research focus in the pharmaceutical industry. For example, alpha-hydroxy ketones are found in antidepressants, in selective inhibitors of amyloid-beta protein production (used in the treatment of Alzheimer's), in farnesyl transferase inhibitors (Kurasoin A and B), and in antitumor antibiotics (Olivomycin A and Chromomycin A3). Moreover, alpha-hydroxy ketones are of particular value as fine chemicals because of their utility as building blocks for the production of larger molecules. They can also be used in preparing many other important structures, such as amino alcohols, diols, and so forth. Several purely chemical synthetic approaches have been proposed to afford these compounds, together with some organocatalytic strategies (thiazolium-based carboligations, proline alpha-hydroxylations, and so forth). However, many of these chemical approaches are not straightforward, lack selectivity, or are economically unattractive because of the large number of chemical steps required (usually combined with low enantioselectivities). In this Account, we describe three different biocatalytic approaches that have been developed to efficiently produce alpha-hydroxy ketones: (i) The use of thiamine diphosphate-dependent lyases (ThDP-lyases) to catalyze the umpolung carboligation of aldehydes. Enantiopure alpha-hydroxy ketones are formed from inexpensive aldehydes with this method. Some lyases with a broad substrate spectrum have been successfully characterized. Furthermore, the use of biphasic media with recombinant whole cells overexpressing lyases leads to productivities of approximately 80-100 g/L with high enantiomeric excesses (up to >99%). (ii) The use of hydrolases to produce alpha-hydroxy ketones by means of (in situ) dynamic kinetic resolutions (DKRs). Lipases are able to successfully resolve racemates, and many outstanding examples have been reported. However, this approach leads to a maximum theoretical yield of 50%. As a means of overcoming this problem, these traditional lipase-catalyzed kinetic resolutions are combined with racemization of remnant substrate, which can be done in situ or in separate compartments. Examples showing high conversions (>90%) and enantiomeric excesses (>99%) are described. (iii) Whole-cell redox processes, catalyzed by several microorganisms, either by means of free enzymes (applying a cofactor regeneration system) or by whole cells. Through the use of redox machineries, different strategies can lead to high yields and enantiomeric excesses. Some enantiopure alpha-hydroxy ketones can be formed by reductions of diketones and by selective oxidations of vicinal diols. Likewise, some redox processes involving sugar chemistry (involving alpha-hydroxy ketones) have been developed on the industrial scale. Finally, the redox whole-cell concept allows racemizations (and deracemizations) as well. These three strategies provide a useful and environmentally friendly synthetic toolbox. Likewise, the field represents an illustrative example of how biocatalysis can assist practical synthetic processes, and how problems derived from the integration of natural tools in synthetic pathways can be efficiently tackled to afford high yields and enantioselectivities.
高效合成对映体富集的α-羟基酮是制药行业的一个重要研究焦点。例如,α-羟基酮存在于抗抑郁药、淀粉样蛋白-β 产生的选择性抑制剂(用于治疗阿尔茨海默病)、法呢基转移酶抑制剂(Kurasoin A 和 B)和抗肿瘤抗生素(Olivomycin A 和 Chromomycin A3)中。此外,α-羟基酮因其作为生产更大分子的构建块的用途而具有特别的价值。它们还可用于制备许多其他重要结构,例如氨基酸醇、二醇等。已经提出了几种纯粹的化学合成方法来获得这些化合物,以及一些有机催化策略(噻唑鎓基碳键合、脯氨酸α-羟化等)。然而,由于需要大量的化学步骤(通常与低对映选择性相结合),许多这些化学方法并不直接、缺乏选择性或在经济上没有吸引力。在本说明中,我们描述了三种不同的生物催化方法,这些方法已被开发用于高效生产α-羟基酮:(i)使用硫胺素二磷酸依赖性裂解酶(ThDP-裂解酶)催化醛的反转碳键合。使用该方法可从廉价的醛形成手性纯的α-羟基酮。已经成功地对具有广泛底物谱的一些裂解酶进行了特征描述。此外,使用过表达裂解酶的重组全细胞的双相介质可导致约 80-100g/L 的生产率和高对映体过量(高达>99%)。(ii)使用水解酶通过(原位)动态动力学拆分(DKR)来生产α-羟基酮。脂肪酶能够成功拆分外消旋体,并且已经报道了许多出色的例子。然而,这种方法的理论产率最高可达 50%。作为克服此问题的一种手段,这些传统的脂肪酶催化的动力学拆分与残余底物的消旋化相结合,这可以在原位或在单独的隔室中进行。描述了显示高转化率(>90%)和对映体过量(>99%)的示例。(iii)几种微生物通过整个细胞的氧化还原过程进行催化,要么通过游离酶(应用辅助因子再生系统),要么通过整个细胞。通过使用氧化还原机制,可以采用不同的策略来获得高产率和对映体过量。通过还原二酮和选择性氧化邻二醇,可以形成一些手性纯的α-羟基酮。同样,一些涉及糖化学(涉及α-羟基酮)的氧化还原过程已在工业规模上得到开发。最后,氧化还原全细胞概念允许进行外消旋化(和去外消旋化)。这三种策略提供了一个有用且环保的合成工具包。同样,该领域代表了一个说明性示例,说明生物催化如何有助于实际的合成过程,以及如何有效地解决将天然工具集成到合成途径中产生的问题,以获得高产率和对映体选择性。