Suppr超能文献

茴香霉素中苄基吡咯烷前体通过一种独特的硫胺素二磷酸(ThDP)依赖性酶的生物合成。

Biosynthesis of the benzylpyrrolidine precursor in anisomycin by a unique ThDP-dependent enzyme.

作者信息

Qiao Yongjian, Wang Junbo, Zhang Dashan, Zheng Xiaoqing, Lin Baixin, Huang Yongkang, Liao Yulin, Deng Zixin, Kong Lingxin, You Delin

机构信息

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China.

出版信息

Synth Syst Biotechnol. 2024 Aug 22;10(1):76-85. doi: 10.1016/j.synbio.2024.08.006. eCollection 2025.

Abstract

Anisomycin (compound ), a multifunctional pyrrolidine antibiotic, primarily inhibits protein biosynthesis by binding to the ribosome. Upon binding to the ribosome, the para-phenol moiety of anisomycin inserts completely into the hydrophobic crevice of the A-site and blocks the access of the incoming aminoacyl-tRNAs, disrupting peptide bond formation. Hence, the para-methoxyphenyl group serves as a starting point for developing novel anisomycin analogs with potent antifungal and insecticidal properties. However, the activation and condensation mechanism of phenylpyruvic acid has not yet been elucidated. In this study, genetic manipulations of and its homologue confirmed their indispensable role in biosynthesis. Bioinformatics analysis suggested that AniP and siAniP function as transketolase. siAniP was found to catalyzed condensation between 4-hydroxyphenylpyruvic acid () and glyceraldehyde (GA), initiating pyrrolidine synthesis. siAniP was specific for aromatic keto acids and tolerant of aliphatic and aromatic aldehydes, and was able to catalyze the asymmetric intermolecular condensation of two keto acids, leading to the formation of 24 α-hydroxy ketone. To the best of our knowledge, siAniP is the first TK that catalyzes the transfer of a C2 ketol and symmetrical intermolecular coupling using aromatic keto acids as donor substrates. Structural analysis, docking model construction, and site-directed mutagenesis identified that I220, H275, R322 and W391 were crucial for substrate binding. Moreover, sequence similarity network (SSN)-based genome neighborhood network (GNN) analyses of AniP suggested the widespread occurrence of the AniP-like-mediated reaction in the biosynthesis of and its analogs, particularly in the assembly of benzylpyrrolidine. These findings not only expand the repertoire of TKs but also provide a potent biocatalyst that could be used for the structural innovation of and its derivatives.

摘要

茴香霉素(化合物)是一种多功能吡咯烷抗生素,主要通过与核糖体结合来抑制蛋白质生物合成。与核糖体结合后,茴香霉素的对苯酚部分完全插入A位点的疏水裂缝中,阻止进入的氨酰基转移RNA进入,从而破坏肽键形成。因此,对甲氧基苯基基团是开发具有强效抗真菌和杀虫特性的新型茴香霉素类似物的起点。然而,苯丙酮酸的激活和缩合机制尚未阐明。在本研究中,对[具体基因名称1]及其同源物[具体基因名称2]的基因操作证实了它们在[具体物质名称]生物合成中的不可或缺的作用。生物信息学分析表明,AniP和siAniP作为转酮醇酶发挥作用。发现siAniP催化4-羟基苯丙酮酸([具体名称])和甘油醛(GA)之间的缩合反应,启动吡咯烷合成。siAniP对芳香族酮酸具有特异性,对脂肪族和芳香族醛具有耐受性,并且能够催化两种酮酸的不对称分子间缩合反应,导致形成24α-羟基酮。据我们所知,siAniP是第一个催化使用芳香族酮酸作为供体底物的C2酮醇转移和对称分子间偶联的转酮醇酶。结构分析、对接模型构建和定点诱变确定I220、H275、R322和W391对底物结合至关重要。此外,基于序列相似性网络(SSN)的AniP基因组邻域网络(GNN)分析表明,AniP样介导的反应在[具体物质名称]及其类似物的生物合成中广泛存在,特别是在苄基吡咯烷的组装中。这些发现不仅扩展了转酮醇酶的种类,还提供了一种强大的生物催化剂,可用于[具体物质名称]及其衍生物的结构创新。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29e/11387542/37954a92d439/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验