Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest H-1113, Hungary.
J Biol Chem. 2010 Jan 15;285(3):1799-808. doi: 10.1074/jbc.M109.053116. Epub 2009 Nov 12.
Previously we have identified the lipid mediator sphingosylphosphorylcholine (SPC) as the first potentially endogenous inhibitor of the ubiquitous Ca2+ sensor calmodulin (CaM) (Kovacs, E., and Liliom, K. (2008) Biochem. J. 410, 427-437). Here we give mechanistic insight into CaM inhibition by SPC, based on fluorescence stopped-flow studies with the model CaM-binding domain melittin. We demonstrate that both the peptide and SPC micelles bind to CaM in a rapid and reversible manner with comparable affinities. Furthermore, we present kinetic evidence that both species compete for the same target site on CaM, and thus SPC can be considered as a competitive inhibitor of CaM-target peptide interactions. We also show that SPC disrupts the complex of CaM and the CaM-binding domain of ryanodine receptor type 1, inositol 1,4,5-trisphosphate receptor type 1, and the plasma membrane Ca2+ pump. By interfering with these interactions, thus inhibiting the negative feedback that CaM has on Ca2+ signaling, we hypothesize that SPC could lead to Ca2+ mobilization in vivo. Hence, we suggest that the action of the sphingolipid on CaM might explain the previously recognized phenomenon that SPC liberates Ca2+ from intracellular stores. Moreover, we demonstrate that unlike traditional synthetic CaM inhibitors, SPC disrupts the complex between not only the Ca2+-saturated but also the apo form of the protein and the target peptide, suggesting a completely novel regulation for target proteins that constitutively bind CaM, such as ryanodine receptors.
先前我们已经发现脂质介质溶血磷脂酰胆碱(SPC)是普遍存在的 Ca2+ 传感器钙调蛋白(CaM)的第一个潜在内源性抑制剂(Kovacs,E.,和 Liliom,K.(2008)生物化学杂志。410,427-437)。在这里,我们根据与模型 CaM 结合域蜂毒素的荧光停流研究,提供了 SPC 抑制 CaM 的机制见解。我们证明,肽和 SPC 胶束都以快速和可逆的方式与可比亲和力结合 CaM。此外,我们提出了动力学证据,表明两种物质都竞争 CaM 上的相同靶位,因此 SPC 可以被认为是 CaM-靶肽相互作用的竞争性抑制剂。我们还表明,SPC 破坏了 CaM 与肌醇 1,4,5-三磷酸受体 1 和质膜 Ca2+ 泵的 CaM 结合域的 Ryanodine 受体 1 的复合物。通过干扰这些相互作用,从而抑制 CaM 对 Ca2+ 信号的负反馈,我们假设 SPC 可能导致体内 Ca2+ 动员。因此,我们建议鞘磷脂对 CaM 的作用可以解释先前认识到的 SPC 从细胞内储存中释放 Ca2+ 的现象。此外,我们证明,与传统的合成 CaM 抑制剂不同,SPC 不仅破坏了 Ca2+-饱和形式的蛋白质和靶肽之间的复合物,而且还破坏了 apo 形式的蛋白质和靶肽之间的复合物,这表明对那些与 CaM 持续结合的靶蛋白(如 Ryanodine 受体)进行了完全新颖的调节。