Zhou Tao, Shi PeiJun, Hui DaFeng, Luo Yiqi
State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, 100875, China.
Sci China C Life Sci. 2009 Oct;52(10):982-9. doi: 10.1007/s11427-009-0125-1. Epub 2009 Nov 13.
Temperature sensitivity of soil respiration (Q(10)) is an important parameter in modeling the effects of global warming on ecosystem carbon release. Experimental studies of soil respiration have ubiquitously indicated that Q(10) has high spatial heterogeneity. However, most biogeochemical models still use a constant Q(10) in projecting future climate change and no spatial pattern of Q(10) values at large scales has been derived. In this study, we conducted an inverse modeling analysis to retrieve the spatial pattern of Q(10) in China at 8 km spatial resolution by assimilating data of soil organic carbon into a process-based terrestrial carbon model (CASA model). The results indicate that the optimized Q(10) values are spatially heterogeneous and consistent to the values derived from soil respiration observations. The mean Q(10) values of different soil types range from 1.09 to 2.38, with the highest value in volcanic soil, and the lowest value in cold brown calcic soil. The spatial pattern of Q (10) is related to environmental factors, especially precipitation and top soil organic carbon content. This study demonstrates that inverse modeling is a useful tool in deriving the spatial pattern of Q(10) at large scales, with which being incorporated into biogeochemical models, uncertainty in the projection of future carbon dynamics could be potentially reduced.
土壤呼吸的温度敏感性(Q10)是模拟全球变暖对生态系统碳释放影响的一个重要参数。土壤呼吸的实验研究普遍表明,Q10具有高度的空间异质性。然而,大多数生物地球化学模型在预测未来气候变化时仍使用恒定的Q10,并且尚未得出大尺度上Q10值的空间格局。在本研究中,我们通过将土壤有机碳数据同化到一个基于过程的陆地碳模型(CASA模型)中,进行了反演建模分析,以8公里的空间分辨率获取中国Q10的空间格局。结果表明,优化后的Q10值在空间上是异质的,并且与从土壤呼吸观测中得出的值一致。不同土壤类型的平均Q10值在1.09至2.38之间,火山土中的值最高,冷棕色钙质土中的值最低。Q10的空间格局与环境因素有关,特别是降水和表层土壤有机碳含量。本研究表明,反演建模是获取大尺度上Q10空间格局的一个有用工具,将其纳入生物地球化学模型中,可能会降低未来碳动态预测中的不确定性。