Suppr超能文献

多尺度地理空间农业生态系统建模:以土壤数据分辨率对碳预算估计的影响为例。

Multi-scale geospatial agroecosystem modeling: a case study on the influence of soil data resolution on carbon budget estimates.

机构信息

Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park, MD 20740, USA.

Department of Geographical Sciences, University of Maryland, College Park, MD 20740, USA.

出版信息

Sci Total Environ. 2014 May 1;479-480:138-50. doi: 10.1016/j.scitotenv.2014.01.099. Epub 2014 Feb 19.

Abstract

The development of effective measures to stabilize atmospheric CO2 concentration and mitigate negative impacts of climate change requires accurate quantification of the spatial variation and magnitude of the terrestrial carbon (C) flux. However, the spatial pattern and strength of terrestrial C sinks and sources remain uncertain. In this study, we designed a spatially-explicit agroecosystem modeling system by integrating the Environmental Policy Integrated Climate (EPIC) model with multiple sources of geospatial and surveyed datasets (including crop type map, elevation, climate forcing, fertilizer application, tillage type and distribution, and crop planting and harvesting date), and applied it to examine the sensitivity of cropland C flux simulations to two widely used soil databases (i.e. State Soil Geographic-STATSGO of a scale of 1:250,000 and Soil Survey Geographic-SSURGO of a scale of 1:24,000) in Iowa, USA. To efficiently execute numerous EPIC runs resulting from the use of high resolution spatial data (56m), we developed a parallelized version of EPIC. Both STATSGO and SSURGO led to similar simulations of crop yields and Net Ecosystem Production (NEP) estimates at the State level. However, substantial differences were observed at the county and sub-county (grid) levels. In general, the fine resolution SSURGO data outperformed the coarse resolution STATSGO data for county-scale crop-yield simulation, and within STATSGO, the area-weighted approach provided more accurate results. Further analysis showed that spatial distribution and magnitude of simulated NEP were more sensitive to the resolution difference between SSURGO and STATSGO at the county or grid scale. For over 60% of the cropland areas in Iowa, the deviations between STATSGO- and SSURGO-derived NEP were larger than 1MgCha(-1)yr(-1), or about half of the average cropland NEP, highlighting the significant uncertainty in spatial distribution and magnitude of simulated C fluxes resulting from differences in soil data resolution.

摘要

为了制定有效的措施稳定大气 CO2 浓度并减轻气候变化的负面影响,需要准确量化陆地碳(C)通量的空间变化和幅度。然而,陆地碳汇和源的空间格局和强度仍不确定。在本研究中,我们设计了一个具有空间显式的农业生态系统模型系统,通过将环境政策综合气候(EPIC)模型与多种地理空间和调查数据集(包括作物类型图、海拔、气候强迫、施肥、耕作类型和分布以及作物种植和收获日期)相结合,并将其应用于研究农田 C 通量模拟对美国爱荷华州两种广泛使用的土壤数据库(即比例尺为 1:250000 的州土壤地理-STATSGO 和比例尺为 1:24000 的土壤调查地理-SSURGO)的敏感性。为了有效地执行使用高分辨率空间数据(56m)导致的大量 EPIC 运行,我们开发了 EPIC 的并行版本。STATSGO 和 SSURGO 都导致了在州级水平上作物产量和净生态系统生产力(NEP)估计的类似模拟。然而,在县和分区(网格)级别观察到了大量差异。一般来说,细分辨率的 SSURGO 数据在县级作物产量模拟方面优于粗分辨率的 STATSGO 数据,而在 STATSGO 中,面积加权方法提供了更准确的结果。进一步分析表明,在县或网格尺度上,模拟 NEP 的空间分布和幅度对 SSURGO 和 STATSGO 之间分辨率差异更为敏感。对于爱荷华州超过 60%的农田面积,STATSGO 和 SSURGO 衍生的 NEP 之间的偏差大于 1MgCha(-1)yr(-1),或约为平均农田 NEP 的一半,突出表明由于土壤数据分辨率的差异,模拟 C 通量的空间分布和幅度存在显著不确定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验