Department of Chemistry, William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Langmuir. 2010 Apr 6;26(7):4977-83. doi: 10.1021/la903641k.
A phospholipid monolayer, approximately half the bilayer structure of a biological membrane, can be regarded as an ideal model for investigating biomineralization on biological membranes. In this work on the biomimetic mineralization of CaCO(3) under a phospholipid monolayer, we show the initial heterogeneous nucleation of amorphous calcium carbonate precursor (ACC) nanoparticles at the air-water interface, their subsequent transformation into the metastable vaterite phase instead of the most thermodynamically stable calcite phase, and the ultimate phase transformation to calcite. Furthermore, the spontaneity of the transformation from vaterite to calcite was found to be closely related to the surface tension; high surface pressure could inhibit the process, highlighting the determinant of surface energy. To understand better the mechanisms for ACC formation and the transformation from ACC to vaterite and to calcite, in situ Brewster angle microscopy (BAM), ex situ scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction analysis were employed. This work has clarified the crystallization process of calcium carbonate under phospholipid monolayers and therefore may further our understanding of the biomineralization processes induced by cellular membranes.
一个磷脂单层,大约是生物膜双层结构的一半,可以被看作是研究生物膜上生物矿化的理想模型。在这项关于在磷脂单层下仿生碳酸钙矿化的工作中,我们展示了在气-水界面上无定形碳酸钙前体(ACC)纳米颗粒的初始非均相成核,随后它们转化为亚稳的方解石相而不是最热力学稳定的方解石相,以及最终的方解石相转化。此外,我们发现从球霰石到方解石的转变的自发性与表面张力密切相关;高表面压力可以抑制这个过程,突出了表面能的决定性。为了更好地理解 ACC 形成的机制以及从 ACC 到球霰石和方解石的转变机制,我们采用了原位布鲁斯特角显微镜(BAM)、非原位扫描电子显微镜、透射电子显微镜、拉曼光谱和 X 射线衍射分析。这项工作阐明了碳酸钙在磷脂单层下的结晶过程,因此可能有助于我们理解细胞膜诱导的生物矿化过程。