Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118; and Department of Anatomy, Tulane University School of Medicine, New Orleans, Louisiana 70112.
Mol Cell Neurosci. 1993 Jun;4(3):237-44. doi: 10.1006/mcne.1993.1030.
Hypothalamic expression of growth hormone-releasing hormone (GHRH) mRNA was examined in two transgenic mouse models displaying excess or deficient endogenous GH. Transgenic dwarf mice bore a gene construct consisting of the rat growth hormone (GH) promoter fused to a diphtheria toxin A chain structural gene (DT-A); the GH promoter restricted DT-A expression to endogenous GH-producing cells, which were destroyed. GH was undetectable in either the pituitary or the peripheral circulation (Behringer et al., Genes Devel. 2: 453-461, 1988). Transgenic giant mice carried a construction joining the metallothionein promoter to the human GHRH structural gene, which stimulated endogenous pituitary GH production (Hammer et al., Nature 315: 413-417, 1985). In situ hybridization to GHRH mRNA in transgenic dwarf, giant, and nontransgenic controls was performed using single-stranded RNA probes generated from cloned mouse GHRH cDNA. Hybridization to GHRH mRNA was limited to the neurons of the hypothalamic arcuate nucleus (ARC). Autoradiographic densities on X-ray films were quantified by computerized image analysis. There was an increase in GHRH signal intensity in the dwarfs (282 +/- 20 units; mean +/- SEM) relative to that measured in control animals (107 +/- 8 units; P < 0.001), while giant mice had decreased signal (42 +/- 7 units; P < 0.001) in the ARC. The present studies demonstrate that increase in GHRH mRNA expression accompanies GH deficiency, while a decrease in GHRH mRNA accompanies GH excess, suggesting both positive and negative feedback upon steady-state mRNA levels in hypophysiotropic neurons by target pituitary hormone.
生长激素释放激素 (GHRH) mRNA 的下丘脑表达在两种表现出内源性 GH 过多或不足的转基因小鼠模型中进行了检查。转基因侏儒小鼠携带由大鼠生长激素 (GH) 启动子与白喉毒素 A 链结构基因 (DT-A) 融合而成的基因构建体;GH 启动子将 DT-A 表达限制在产生内源性 GH 的细胞中,这些细胞被破坏。无论是垂体还是外周循环中都无法检测到 GH(Behringer 等人,Genes Devel. 2: 453-461, 1988)。转基因巨鼠携带一个构建体,将金属硫蛋白启动子与人类 GHRH 结构基因连接起来,从而刺激内源性垂体 GH 产生(Hammer 等人,Nature 315: 413-417, 1985)。使用从克隆的小鼠 GHRH cDNA 生成的单链 RNA 探针,对转基因侏儒、巨人和非转基因对照中的 GHRH mRNA 进行了原位杂交。GHRH mRNA 的杂交仅限于下丘脑弓状核的神经元。通过计算机化图像分析对 X 射线胶片上的放射自显影密度进行定量。与对照动物(107 +/- 8 单位;P < 0.001)相比,侏儒中的 GHRH 信号强度增加(282 +/- 20 单位;平均值 +/- SEM),而巨鼠中的 ARC 信号降低(42 +/- 7 单位;P < 0.001)。本研究表明,GHRH mRNA 表达的增加伴随着 GH 缺乏,而 GHRH mRNA 的减少伴随着 GH 过多,提示靶垂体激素对下丘脑神经元的稳态 mRNA 水平既有正反馈又有负反馈。