UPMC Univ. Paris 06, UMR-7619 SISYPHE, 4 Pl. Jussieu, F-75252 Paris, France.
J Colloid Interface Sci. 2010 Feb 1;342(1):166-74. doi: 10.1016/j.jcis.2009.09.056. Epub 2009 Oct 9.
The conditions to obtain a macroscopic model for the thermo-osmotic coupling coefficient which is needed for practical calculations of fluid flow in clay-rocks subjected to temperature gradients are investigated in this paper. A theoretical expression for the thermo-osmotic coupling coefficient proportional to the hydraulic conductivity was obtained. The theoretical expression of the thermo-osmotic conductivity involves the excess Gibbs energy of the fluid between adjacent charged surfaces. The interaction energy was calculated using disjoining pressure data. Our calculations suggest a crucial role of the so-called hydration or structural energy of interaction to explain the thermo-osmotic process. The mean pore size, i.e. the mean interparticle spacing, the concentration of the equilibrium solution and the temperature are determinant variables in this process. Some exploratory comparisons between the model and the available data for pure clays are proposed.
本文研究了获得热渗流耦合系数宏观模型的条件,该模型是对温度梯度下粘土岩中流体流动进行实际计算所必需的。本文得到了一个与渗透率成正比的热渗流耦合系数的理论表达式。热渗流导率的理论表达式涉及相邻带电表面之间流体的过剩吉布斯能量。通过使用离差压力数据计算了相互作用能。我们的计算表明,所谓的相互作用的水合或结构能在解释热渗流过程中起着关键作用。在这个过程中,平均孔径,即平均颗粒间距离、平衡溶液的浓度和温度是决定变量。本文还提出了模型与纯粘土可用数据之间的一些初步比较。