Suppr超能文献

参数法和自举法在生物等效性检验中的比较。

Comparison of parametric and bootstrap method in bioequivalence test.

机构信息

Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea.

出版信息

Korean J Physiol Pharmacol. 2009 Oct;13(5):367-71. doi: 10.4196/kjpp.2009.13.5.367. Epub 2009 Oct 31.

Abstract

The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed data are normally distributed. To compare the parametric CIs with those obtained from nonparametric methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax values from 3 archived datasets were used. BE tests on 1,000 resampled datasets from each archived dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of formulation effects were then compared with the parametric 90% CIs of the original datasets. The 90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves of formulation effects obtained from resampled datasets were similar to those of normal distribution. However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 non-normally distributed resampled log (AUC) datasets. Currently, the 80~125% rule based upon the parametric 90% CIs is widely accepted under the assumption of normally distributed formulation effects in log-transformed data. However, nonparametric CIs may be a better choice when data do not follow this assumption.

摘要

估算生物等效性(BE)试验中平均 AUC 和 Cmax 比值的 90% 参数置信区间(CI)基于这样一个假设,即在对数转换数据中,制剂效应呈正态分布。为了将参数 CI 与非参数方法获得的 CI 进行比较,我们对 bootstrap 重采样数据集进行了重复估计。使用了来自 3 个存档数据集的 AUC 和 Cmax 值。使用 SAS(Enterprise Guide Ver.3)对来自每个存档数据集的 1000 个重采样数据集进行 BE 试验。然后,将制剂效应的 bootstrap 非参数 90%CI 与原始数据集的参数 90%CI 进行比较。从 3 个存档数据集中估算的制剂效应的 90%CI 与从重采样数据集的 BE 试验中获得的非参数 90%CI 略有不同。从重采样数据集中获得的制剂效应的直方图和密度曲线与正态分布相似。然而,在 3 个重采样 log(AUC)数据集中的 2 个数据集中,制剂效应的估计值并不遵循高斯分布。偏置校正和加速(BCa)CI 是制剂效应的非参数 CI 之一,在这 2 个非正态分布的重采样 log(AUC)数据集中,制剂效应的估计值超出了存档数据集的参数 90%CI。目前,基于正态分布制剂效应在对数转换数据中的假设,参数 90%CI 广泛接受 80%~125%规则。然而,当数据不遵循此假设时,非参数 CI 可能是更好的选择。

相似文献

1
Comparison of parametric and bootstrap method in bioequivalence test.参数法和自举法在生物等效性检验中的比较。
Korean J Physiol Pharmacol. 2009 Oct;13(5):367-71. doi: 10.4196/kjpp.2009.13.5.367. Epub 2009 Oct 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验