York College and The Graduate Center, The American Museum of Natural History, The City University of New York New York, NY, USA.
Front Mol Neurosci. 2009 Oct 30;2:21. doi: 10.3389/neuro.02.021.2009. eCollection 2009.
Neuronal circuits depend on the precise regulation of cell-surface receptors and ion channels. An ongoing challenge in neuroscience research is deciphering the functional contribution of specific receptors and ion channels using engineered modulators. A novel strategy, termed "tethered toxins", was recently developed to characterize neuronal circuits using the evolutionary derived selectivity of venom peptide toxins and endogenous peptide ligands, such as lynx1 prototoxins. Herein, the discovery and engineering of cell-surface tethered peptides is reviewed, with particular attention given to their cell-autonomy, modular composition, and genetic targeting in different model organisms. The relative ease with which tethered peptides can be engineered, coupled with the increasing number of neuroactive venom toxins and ligand peptides being discovered, imply a multitude of potentially innovative applications for manipulating neuronal circuits and tissue-specific cell networks, including treatment of disorders caused by malfunction of receptors and ion channels.
神经元回路依赖于细胞表面受体和离子通道的精确调节。神经科学研究中的一个持续挑战是使用工程化调节剂来破译特定受体和离子通道的功能贡献。最近开发了一种新策略,称为“连接毒素”,利用毒液肽毒素和内源性肽配体(如 Lynx1 原毒素)的进化衍生选择性来表征神经元回路。本文综述了细胞表面连接肽的发现和工程改造,特别关注它们的细胞自主性、模块化组成以及在不同模式生物中的遗传靶向性。连接肽很容易进行工程改造,而且越来越多的神经活性毒液毒素和配体肽被发现,这意味着在操纵神经元回路和组织特异性细胞网络方面可能有多种创新应用,包括治疗受体和离子通道功能障碍引起的疾病。