Suppr超能文献

用于储氢及电化学电源中转换的纳米材料的机械化学活化与合成

Mechanochemical activation and synthesis of nanomaterials for hydrogen storage and conversion in electrochemical power sources.

作者信息

Wronski Zbigniew S, Varin Robert A, Czujko Tom

机构信息

HyFATE, CanmetENERGY, Department of Natural Resources Canada, Ottawa, Ontario K1A 0G1, Canada.

出版信息

J Nanosci Nanotechnol. 2009 Jul;9(7):4048-55. doi: 10.1166/jnn.2009.m09.

Abstract

In this study we discuss a process of mechanical activation employed in place of chemical or thermal activation to improve the mobility and reactivity of hydrogen atoms and ions in nanomaterials for energy applications: rechargeable batteries and hydrogen storage for fuel cell systems. Two materials are discussed. Both are used or intended for use in power sources. One is nickel hydroxide, Ni(OH)2, which converts to oxyhydroxide in the positive Ni electrode of rechargeable metal hydride batteries. The other is a complex hydride, Mg(AIH4)2, intended for use in reversible, solid-state hydrogen storage for fuel cells. The feature shared by these unlikely materials (hydroxide and hydride) is a sheet-like hexagonal crystal structure. The mechanical activation was conducted in high-energy ball mills. We discuss and demonstrate that the mechanical excitation of atoms and ions imparted on these powders stems from the same class of phenomena. These are (i) proliferation of structural defects, in particular stacking faults in a sheet-like structure of hexagonal crystals, and (ii) possible fragmentation of a faulted structure into a mosaic of layered nanocrystals. The hydrogen atoms bonded in such nanocrystals may be inserted and abstracted more easily from OH- hydroxyl group in Ni(OH)2 and AlH4- hydride complex in Mg(AlH4)2 during hydrogen charge and discharge reactions. However, the effects of mechanical excitation imparted on these powders are different. While the Ni(OH)2 powder is greatly activated for cycling in batteries, the Mg(AlH4)2 complex hydride phase is greatly destabilized for use in reversible hydrogen storage. Such a "synchronic" view of the structure-property relationship in respect to materials involved in hydrogen energy storage and conversion is supported in experiments employing X-ray diffraction (XRD), differential scanning calorimetry (DSC) and direct imaging of the structure with a high-resolution transmission-electron microscope (HREM), as well as in property characterization.

摘要

在本研究中,我们讨论了一种机械活化过程,该过程用于替代化学或热活化,以提高纳米材料中氢原子和离子的迁移率和反应活性,用于能源应用:可充电电池以及燃料电池系统的储氢。我们讨论了两种材料。这两种材料都已用于或打算用于电源。一种是氢氧化镍Ni(OH)₂,它在可充电金属氢化物电池的正极镍电极中转化为羟基氧化物。另一种是复合氢化物Mg(AlH₄)₂,打算用于燃料电池的可逆固态储氢。这些看似不太相关的材料(氢氧化物和氢化物)的共同特征是片状六方晶体结构。机械活化是在高能球磨机中进行的。我们讨论并证明,施加在这些粉末上的原子和离子的机械激发源于同一类现象。这些现象是:(i) 结构缺陷的增殖,特别是六方晶体片状结构中的堆垛层错,以及 (ii) 有缺陷的结构可能破碎成层状纳米晶体的镶嵌体。在氢充放电反应过程中,结合在这种纳米晶体中的氢原子可能更容易从Ni(OH)₂中的OH⁻羟基和Mg(AlH₄)₂中的AlH₄⁻氢化物络合物中插入和脱出。然而,施加在这些粉末上的机械激发的效果是不同的。虽然Ni(OH)₂粉末在电池循环中被极大地活化,但Mg(AlH₄)₂复合氢化物相在用于可逆储氢时却被极大地 destabilized(此处原文可能有误,推测是“失稳”之类的意思)。在采用X射线衍射 (XRD)、差示扫描量热法 (DSC) 以及用高分辨率透射电子显微镜 (HREM) 对结构进行直接成像的实验中,以及在性能表征中,都支持了这种关于氢能存储和转换所涉及材料的结构 - 性能关系的“同步”观点。

相似文献

2
Combination of lightweight elements and nanostructured materials for batteries.
Acc Chem Res. 2009 Jun 16;42(6):713-23. doi: 10.1021/ar800229g.
3
Preparation and characterization of thick-film Ni/MH battery.
Biosens Bioelectron. 2004 Jul 30;20(1):61-7. doi: 10.1016/j.bios.2003.11.029.
4
Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor.
Sci Rep. 2012;2:981. doi: 10.1038/srep00981. Epub 2012 Dec 14.
5
Improved electrochemical performance of LiCoPO4 nanoparticles for lithium ion batteries.
J Nanosci Nanotechnol. 2007 Nov;7(11):4037-40. doi: 10.1166/jnn.2007.078.
6
On the chemical state and distribution of Zr- and V-based additives in reactive hydride composites.
Nanotechnology. 2009 May 20;20(20):204003. doi: 10.1088/0957-4484/20/20/204003. Epub 2009 Apr 23.
7
A reversible copper extrusion-insertion electrode for rechargeable Li batteries.
Nat Mater. 2003 Nov;2(11):755-61. doi: 10.1038/nmat1002. Epub 2003 Oct 26.
8
Charged fullerenes as high-capacity hydrogen storage media.
Nano Lett. 2007 Sep;7(9):2578-83. doi: 10.1021/nl070809a. Epub 2007 Aug 24.
10
Catalyzed light hydride nanomaterials embedded in a micro-channels hydrogen storage container.
Recent Pat Nanotechnol. 2009;3(2):116-34. doi: 10.2174/187221009788490059.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验