Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
Sci Rep. 2012;2:981. doi: 10.1038/srep00981. Epub 2012 Dec 14.
Current solar energy harvest and storage are so far realized by independent technologies (such as solar cell and batteries), by which only a fraction of solar energy is utilized. It is highly desirable to improve the utilization efficiency of solar energy. Here, we construct an integrated photoelectrochemical device with simultaneous supercapacitor and hydrogen evolution functions based on TiO(2)/transition metal hydroxides/oxides core/shell nanorod arrays. The feasibility of solar-driven pseudocapacitance is clearly demonstrated, and the charge/discharge is indicated by reversible color changes (photochromism). In such an integrated device, the photogenerated electrons are utilized for H(2) generation and holes for pseudocapacitive charging, so that both the reductive and oxidative energies are captured and converted. Specific capacitances of 482 F g(-1) at 0.5 A g(-1) and 287 F g(-1) at 1 A g(-1) are obtained with TiO(2)/Ni(OH)(2) nanorod arrays. This study provides a new research strategy for integrated pseudocapacitor and solar energy application.
目前,太阳能的收集和储存是通过独立的技术(如太阳能电池和电池)来实现的,这些技术只能利用太阳能的一小部分。因此,提高太阳能的利用效率是非常理想的。在这里,我们构建了一种基于 TiO(2)/过渡金属氢氧化物/氧化物核/壳纳米棒阵列的同时具有超级电容器和析氢功能的光电化学集成器件。太阳能驱动赝电容的可行性得到了清晰的证明,并且通过可逆的颜色变化(光致变色)来指示充放电。在这种集成器件中,光生电子用于 H(2)的生成,空穴用于赝电容的充电,从而捕获和转换了还原和氧化能量。TiO(2)/Ni(OH)(2)纳米棒阵列的比电容分别为 482 F g(-1)(在 0.5 A g(-1)时)和 287 F g(-1)(在 1 A g(-1)时)。这项研究为集成赝电容和太阳能应用提供了一种新的研究策略。