Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
Inorg Chem. 2009 Dec 21;48(24):11903-8. doi: 10.1021/ic901930w.
A method is presented to design magnetic molecules in which the exchange interaction between adjacent metal ions is controlled by electron density withdrawal through their bridging ligands. We synthesized a novel Mn(4) cluster in which the choice of the bridging carboxylate ligands (acetate, benzoate, or trifluoroacetate) determines the type and strength of the three magnetic exchange couplings (J(1), J(2), and J(3)) present between the metal ions. Experimentally measured magnetic moments in high magnetic fields show that, upon electron density withdrawal, the main antiferromagnetic exchange constant J(1) decreases from -2.2 K for the [Mn(4)(OAc)(4)] cluster to -1.9 K for the [Mn(4)(H(5)C(6)COO)(4)] cluster and -0.6 K for the [Mn(4)(F(3)CCOO)(4)] cluster, while J(2) decreases from -1.1 K to nearly 0 K and J(3) changes to a small ferromagnetic coupling. These experimental results are further supported with density-functional theory calculations based on the obtained crystallographic structures of the [Mn(4)(OAc)(4)] and [Mn(4)(F(3)CCOO)(4)] clusters.
提出了一种设计磁性分子的方法,其中通过桥连配体的电子密度抽提来控制相邻金属离子之间的交换相互作用。我们合成了一种新型的 Mn(4) 簇合物,其中桥连羧酸配体(乙酸盐、苯甲酸盐或三氟乙酸盐)的选择决定了金属离子之间存在的三种磁交换耦合(J(1)、J(2)和 J(3))的类型和强度。在高磁场中测量的实验磁矩表明,在电子密度抽提后,主要的反铁磁交换常数 J(1) 从 [Mn(4)(OAc)(4)] 簇的-2.2 K 降低到 [Mn(4)(H(5)C(6)COO)(4)] 簇的-1.9 K 和 [Mn(4)(F(3)CCOO)(4)] 簇的-0.6 K,而 J(2) 从-1.1 K 降低到几乎 0 K,J(3) 转变为小的铁磁耦合。这些实验结果进一步得到了基于获得的 [Mn(4)(OAc)(4)] 和 [Mn(4)(F(3)CCOO)(4)] 簇合物的晶体结构的密度泛函理论计算的支持。