Suppr超能文献

一种用于模拟和预测纳米通道中流体流动的高效工具。

An efficient tool for modeling and predicting fluid flow in nanochannels.

机构信息

Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.

出版信息

J Chem Phys. 2009 Nov 14;131(18):184506. doi: 10.1063/1.3253701.

Abstract

Molecular dynamics simulations were performed to evaluate the penetration of two different fluids (i.e., a Lennard-Jones fluid and a polymer) through a designed nanochannel. For both fluids, the length of permeation as a function of time was recorded for various wall-fluid interactions. A novel methodology, namely, the artificial neural network (ANN) approach was then employed for modeling and prediction of the length of imbibition as a function of influencing parameters (i.e., time, the surface tension and the viscosity of fluids, and the wall-fluid interaction). It was demonstrated that the designed ANN is capable of modeling and predicting the length of penetration with superior accuracy. Moreover, the importance of variables in the designed ANN, i.e., time, the surface tension and the viscosity of fluids, and the wall-fluid interaction, was demonstrated with the aid of the so-called connection weight approach, by which all parameters are simultaneously considered. It was revealed that the wall-fluid interaction plays a significant role in such transport phenomena, namely, fluid flow in nanochannels.

摘要

采用分子动力学模拟研究了两种不同流体(即 Lennard-Jones 流体和聚合物)通过设计的纳米通道的渗透情况。对于两种流体,记录了不同壁-流相互作用下渗透长度随时间的变化。然后,采用一种新的方法,即人工神经网络(ANN)方法,对作为影响参数(即时间、流体的表面张力和粘度以及壁-流相互作用)的函数的吸液长度进行建模和预测。结果表明,设计的 ANN 能够以较高的精度对渗透长度进行建模和预测。此外,通过所谓的连接权重方法,证明了设计的 ANN 中变量(即时间、流体的表面张力和粘度以及壁-流相互作用)的重要性,通过该方法可以同时考虑所有参数。结果表明,壁-流相互作用在这种输运现象中起着重要作用,即纳米通道中的流体流动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验