Institute of Molecular System Biology, ETH Zürich, CH-8093 Zürich, Switzerland.
J Biol Chem. 2010 Jan 15;285(3):1587-96. doi: 10.1074/jbc.M109.061747. Epub 2009 Nov 16.
Commonly glucose is considered to be the only preferred substrate in Bacillus subtilis whose presence represses utilization of other alternative substrates. Because recent data indicate that malate might be an exception, we quantify here the carbon source utilization hierarchy. Based on physiology and transcriptional data during co-utilization experiments with eight carbon substrates, we demonstrate that malate is a second preferred carbon source for B. subtilis, which is rapidly co-utilized with glucose and strongly represses the uptake of alternative substrates. From the different hierarchy and degree of catabolite repression exerted by glucose and malate, we conclude that both substrates might act through different molecular mechanisms. To obtain a quantitative and functional network view of how malate is (co)metabolized, we developed a novel approach to metabolic flux analysis that avoids error-prone, intuitive, and ad hoc decisions on (13)C rearrangements. In particular, we developed a rigorous approach for deriving reaction reversibilities by combining in vivo intracellular metabolite concentrations with a thermodynamic feasibility analysis. The thus-obtained analytical model of metabolism was then used for network-wide isotopologue balancing to estimate the intracellular fluxes. These (13)C-flux data revealed an extraordinarily high malate influx that is primarily catabolized via the gluconeogenic reactions and toward overflow metabolism. Furthermore, a considerable NADPH-producing malic enzyme flux is required to supply the biosynthetically required NADPH in the presence of malate. Co-utilization of glucose and malate resulted in a synergistic decrease of the respiratory tricarboxylic acid cycle flux.
通常情况下,葡萄糖被认为是枯草芽孢杆菌唯一首选的底物,其存在会抑制其他替代底物的利用。由于最近的数据表明苹果酸可能是一个例外,我们在这里量化了碳源利用层次结构。基于共利用实验中与八种碳源相关的生理学和转录数据,我们证明苹果酸是枯草芽孢杆菌的第二首选碳源,它与葡萄糖快速共利用,并强烈抑制替代底物的摄取。根据葡萄糖和苹果酸施加的不同层次和不同程度的分解代谢物抑制作用,我们得出结论,这两种底物可能通过不同的分子机制发挥作用。为了获得关于苹果酸如何(共同)代谢的定量和功能网络视图,我们开发了一种新的代谢通量分析方法,该方法避免了在(13)C 重排方面易错、直观和特定的决策。特别是,我们通过将体内细胞内代谢物浓度与热力学可行性分析相结合,开发了一种用于推导反应可逆性的严格方法。由此获得的代谢分析模型随后用于网络范围的同位素平衡以估计细胞内通量。这些(13)C-通量数据显示出极高的苹果酸流入量,主要通过糖异生反应和向溢出代谢进行代谢。此外,在存在苹果酸的情况下,需要相当大的 NADPH 产生的苹果酸酶通量来供应生物合成所需的 NADPH。葡萄糖和苹果酸的共利用导致呼吸三羧酸循环通量协同下降。