Suppr超能文献

枯草芽孢杆菌中苹果酸介导的强碳分解代谢物阻遏时的代谢通量。

Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis.

机构信息

Institute of Molecular System Biology, ETH Zürich, CH-8093 Zürich, Switzerland.

出版信息

J Biol Chem. 2010 Jan 15;285(3):1587-96. doi: 10.1074/jbc.M109.061747. Epub 2009 Nov 16.

Abstract

Commonly glucose is considered to be the only preferred substrate in Bacillus subtilis whose presence represses utilization of other alternative substrates. Because recent data indicate that malate might be an exception, we quantify here the carbon source utilization hierarchy. Based on physiology and transcriptional data during co-utilization experiments with eight carbon substrates, we demonstrate that malate is a second preferred carbon source for B. subtilis, which is rapidly co-utilized with glucose and strongly represses the uptake of alternative substrates. From the different hierarchy and degree of catabolite repression exerted by glucose and malate, we conclude that both substrates might act through different molecular mechanisms. To obtain a quantitative and functional network view of how malate is (co)metabolized, we developed a novel approach to metabolic flux analysis that avoids error-prone, intuitive, and ad hoc decisions on (13)C rearrangements. In particular, we developed a rigorous approach for deriving reaction reversibilities by combining in vivo intracellular metabolite concentrations with a thermodynamic feasibility analysis. The thus-obtained analytical model of metabolism was then used for network-wide isotopologue balancing to estimate the intracellular fluxes. These (13)C-flux data revealed an extraordinarily high malate influx that is primarily catabolized via the gluconeogenic reactions and toward overflow metabolism. Furthermore, a considerable NADPH-producing malic enzyme flux is required to supply the biosynthetically required NADPH in the presence of malate. Co-utilization of glucose and malate resulted in a synergistic decrease of the respiratory tricarboxylic acid cycle flux.

摘要

通常情况下,葡萄糖被认为是枯草芽孢杆菌唯一首选的底物,其存在会抑制其他替代底物的利用。由于最近的数据表明苹果酸可能是一个例外,我们在这里量化了碳源利用层次结构。基于共利用实验中与八种碳源相关的生理学和转录数据,我们证明苹果酸是枯草芽孢杆菌的第二首选碳源,它与葡萄糖快速共利用,并强烈抑制替代底物的摄取。根据葡萄糖和苹果酸施加的不同层次和不同程度的分解代谢物抑制作用,我们得出结论,这两种底物可能通过不同的分子机制发挥作用。为了获得关于苹果酸如何(共同)代谢的定量和功能网络视图,我们开发了一种新的代谢通量分析方法,该方法避免了在(13)C 重排方面易错、直观和特定的决策。特别是,我们通过将体内细胞内代谢物浓度与热力学可行性分析相结合,开发了一种用于推导反应可逆性的严格方法。由此获得的代谢分析模型随后用于网络范围的同位素平衡以估计细胞内通量。这些(13)C-通量数据显示出极高的苹果酸流入量,主要通过糖异生反应和向溢出代谢进行代谢。此外,在存在苹果酸的情况下,需要相当大的 NADPH 产生的苹果酸酶通量来供应生物合成所需的 NADPH。葡萄糖和苹果酸的共利用导致呼吸三羧酸循环通量协同下降。

相似文献

1
Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis.
J Biol Chem. 2010 Jan 15;285(3):1587-96. doi: 10.1074/jbc.M109.061747. Epub 2009 Nov 16.
2
Malate-mediated carbon catabolite repression in Bacillus subtilis involves the HPrK/CcpA pathway.
J Bacteriol. 2011 Dec;193(24):6939-49. doi: 10.1128/JB.06197-11. Epub 2011 Oct 14.
4
Malate metabolism in Bacillus subtilis: distinct roles for three classes of malate-oxidizing enzymes.
FEMS Microbiol Lett. 2013 Feb;339(1):17-22. doi: 10.1111/1574-6968.12041. Epub 2012 Nov 28.
6
Intracellular carbon fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures.
Appl Environ Microbiol. 2002 Apr;68(4):1760-71. doi: 10.1128/AEM.68.4.1760-1771.2002.
7
Metabolic fluxes in riboflavin-producing Bacillus subtilis.
Nat Biotechnol. 1997 May;15(5):448-52. doi: 10.1038/nbt0597-448.
8
Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture.
J Bacteriol. 2001 Dec;183(24):7308-17. doi: 10.1128/JB.183.24.7308-7317.2001.
9
Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis.
Biotechnol Bioeng. 2001 Sep;76(2):144-56. doi: 10.1002/bit.1154.

引用本文的文献

1
Energetic constraints of metal-reducing bacteria as biocatalysts for microbial electrosynthesis.
Biotechnol Biofuels Bioprod. 2025 Jul 11;18(1):72. doi: 10.1186/s13068-025-02666-x.
3
Citrate Supplementation Modulates Medium Viscosity and Poly-γ-Glutamic Acid Synthesis by Engineered 168.
Eng Life Sci. 2025 Mar 4;25(3):e70009. doi: 10.1002/elsc.70009. eCollection 2025 Mar.
5
Simultaneous spatiotemporal transcriptomics and microscopy of Bacillus subtilis swarm development reveal cooperation across generations.
Nat Microbiol. 2023 Dec;8(12):2378-2391. doi: 10.1038/s41564-023-01518-4. Epub 2023 Nov 16.
7
Formation of a stable RNase Y-RicT (YaaT) complex requires RicA (YmcA) and RicF (YlbF).
bioRxiv. 2023 May 23:2023.05.22.541740. doi: 10.1101/2023.05.22.541740.
8
ecBSU1: A Genome-Scale Enzyme-Constrained Model of Based on the ECMpy Workflow.
Microorganisms. 2023 Jan 11;11(1):178. doi: 10.3390/microorganisms11010178.
9
10
Linear programming based gene expression model (LPM-GEM) predicts the carbon source for Bacillus subtilis.
BMC Bioinformatics. 2022 Jun 10;23(1):226. doi: 10.1186/s12859-022-04742-7.

本文引用的文献

1
(13)C-based metabolic flux analysis.
Nat Protoc. 2009;4(6):878-92. doi: 10.1038/nprot.2009.58. Epub 2009 May 21.
4
Cross-platform comparison of methods for quantitative metabolomics of primary metabolism.
Anal Chem. 2009 Mar 15;81(6):2135-43. doi: 10.1021/ac8022857.
5
Carbon catabolite control of the metabolic network in Bacillus subtilis.
Biosci Biotechnol Biochem. 2009 Feb;73(2):245-59. doi: 10.1271/bbb.80479. Epub 2009 Feb 7.
7
Root-secreted malic acid recruits beneficial soil bacteria.
Plant Physiol. 2008 Nov;148(3):1547-56. doi: 10.1104/pp.108.127613. Epub 2008 Sep 26.
8
Carbon catabolite repression in Bacillus subtilis: quantitative analysis of repression exerted by different carbon sources.
J Bacteriol. 2008 Nov;190(21):7275-84. doi: 10.1128/JB.00848-08. Epub 2008 Aug 29.
9
Carbon catabolite repression in bacteria: many ways to make the most out of nutrients.
Nat Rev Microbiol. 2008 Aug;6(8):613-24. doi: 10.1038/nrmicro1932.
10
Maintenance metabolism and carbon fluxes in Bacillus species.
Microb Cell Fact. 2008 Jun 18;7:19. doi: 10.1186/1475-2859-7-19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验