Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20192-7. doi: 10.1073/pnas.0812079106. Epub 2009 Nov 16.
A single regulatory protein can control the fate of many mRNAs with related functions. The Puf3 protein of Saccharomyces cerevisiae is exemplary, as it binds and regulates more than 100 mRNAs that encode proteins with mitochondrial function. Here we elucidate the structural basis of that specificity. To do so, we explore the crystal structures of Puf3p complexes with 2 cognate RNAs. The key determinant of Puf3p specificity is an unusual interaction between a distinctive pocket of the protein with an RNA base outside the "core" PUF-binding site. That interaction dramatically affects binding affinity in vitro and is required for regulation in vivo. The Puf3p structures, combined with those of Puf4p in the same organism, illuminate the structural basis of natural PUF-RNA networks. Yeast Puf3p binds its own RNAs because they possess a -2C and is excluded from those of Puf4p which contain an additional nucleotide in the core-binding site.
一种单一的调节蛋白可以控制具有相关功能的许多 mRNA 的命运。酿酒酵母的 Puf3 蛋白就是一个很好的例子,它能结合并调节 100 多个编码具有线粒体功能的蛋白质的 mRNA。在这里,我们阐明了这种特异性的结构基础。为此,我们探索了 Puf3p 与 2 个同源 RNA 复合物的晶体结构。Puf3p 特异性的关键决定因素是蛋白质中一个独特口袋与“核心” PUF 结合位点之外的 RNA 碱基之间的不寻常相互作用。这种相互作用极大地影响了体外的结合亲和力,并且是体内调节所必需的。Puf3p 结构,结合同一生物体中的 Puf4p 结构,阐明了天然 PUF-RNA 网络的结构基础。酵母 Puf3p 结合其自身的 RNA,因为它们具有 -2C,并且被排除在 Puf4p 的 RNA 之外,后者在核心结合位点中含有额外的核苷酸。