Suppr超能文献

布鲁诺蛋白含有一个扩展的 RNA 识别基序。

Bruno protein contains an expanded RNA recognition motif.

机构信息

Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712, USA.

出版信息

Biochemistry. 2009 Dec 29;48(51):12202-12. doi: 10.1021/bi900624j.

Abstract

The RNA recognition motif (or RRM) is a ubiquitous RNA-binding module present in approximately 2% of the proteins encoded in the human genome. This work characterizes an expanded RRM, which is present in the Drosophila Bruno protein, and targets regulatory elements in the oskar mRNA through which Bruno controls translation. In this Bruno RRM, the deletion of 40 amino acids prior to the N-terminus of the canonical RRM resulted in a significantly decreased affinity of the protein for its RNA target. NMR spectroscopy showed that the expanded Bruno RRM contains the familiar RRM fold of four antiparallel beta-strands and two alpha-helices, preceded by a 10-residue loop that contacts helix alpha(1) and strand beta(2); additional amino acids at the N-terminus of the domain are relatively flexible in solution. NMR results also showed that a truncated form of the Bruno RRM, lacking the flexible N-terminal amino acids, forms a stable and complete canonical RRM, so that the loss of RNA binding activity cannot be attributed to disruption of the RRM fold. This expanded Bruno RRM provides a new example of the features that are important for RNA recognition by an RRM-containing protein.

摘要

RNA 识别基序(或 RRM)是一种普遍存在的 RNA 结合模块,存在于人类基因组编码的大约 2%的蛋白质中。这项工作描述了一个扩展的 RRM,它存在于果蝇 Bruno 蛋白中,并通过 Bruno 控制翻译的 oskar mRNA 的调节元件。在这个 Bruno RRM 中,在典型 RRM 的 N 端之前删除 40 个氨基酸会导致蛋白对其 RNA 靶标亲和力显著降低。NMR 光谱表明,扩展的 Bruno RRM 包含熟悉的四个反平行 β-链和两个 α-螺旋的 RRM 折叠,前面是一个 10 个残基的环,与螺旋 α(1)和β(2)链接触;结构域 N 端的额外氨基酸在溶液中相对灵活。NMR 结果还表明,缺乏灵活的 N 端氨基酸的 Bruno RRM 截断形式形成稳定且完整的典型 RRM,因此 RNA 结合活性的丧失不能归因于 RRM 折叠的破坏。这个扩展的 Bruno RRM 为包含 RRM 的蛋白质识别 RNA 的重要特征提供了一个新的例子。

相似文献

1
Bruno protein contains an expanded RNA recognition motif.
Biochemistry. 2009 Dec 29;48(51):12202-12. doi: 10.1021/bi900624j.
3
Multiple RNA binding domains of Bruno confer recognition of diverse binding sites for translational repression.
RNA Biol. 2011 Nov-Dec;8(6):1047-60. doi: 10.4161/rna.8.6.17542. Epub 2011 Nov 1.
4
Molecular mechanism of MLL PHD3 and RNA recognition by the Cyp33 RRM domain.
J Mol Biol. 2010 Jul 9;400(2):145-54. doi: 10.1016/j.jmb.2010.04.067. Epub 2010 May 8.
7
Conserved binding of GCAC motifs by MEC-8, couch potato, and the RBPMS protein family.
RNA. 2017 Mar;23(3):308-316. doi: 10.1261/rna.059733.116. Epub 2016 Dec 21.
9
The Drosophila Bruno paralogue Bru-3 specifically binds the EDEN translational repression element.
Nucleic Acids Res. 2004 Jun 4;32(10):3070-82. doi: 10.1093/nar/gkh627. Print 2004.
10
Crystal structure of human UP1, the domain of hnRNP A1 that contains two RNA-recognition motifs.
Structure. 1997 Apr 15;5(4):559-70. doi: 10.1016/s0969-2126(97)00211-6.

引用本文的文献

1
mRNA localization in metazoans: A structural perspective.
RNA Biol. 2017 Nov 2;14(11):1473-1484. doi: 10.1080/15476286.2017.1338231. Epub 2017 Jul 31.
2
Region-specific activation of oskar mRNA translation by inhibition of Bruno-mediated repression.
PLoS Genet. 2015 Feb 27;11(2):e1004992. doi: 10.1371/journal.pgen.1004992. eCollection 2015.
3
CELFish ways to modulate mRNA decay.
Biochim Biophys Acta. 2013 Jun-Jul;1829(6-7):695-707. doi: 10.1016/j.bbagrm.2013.01.001. Epub 2013 Jan 15.
4
Multiple RNA binding domains of Bruno confer recognition of diverse binding sites for translational repression.
RNA Biol. 2011 Nov-Dec;8(6):1047-60. doi: 10.4161/rna.8.6.17542. Epub 2011 Nov 1.
5
Sequence determinants for the tandem recognition of UGU and CUG rich RNA elements by the two N--terminal RRMs of CELF1.
Nucleic Acids Res. 2011 Oct;39(19):8638-50. doi: 10.1093/nar/gkr510. Epub 2011 Jul 9.
6
Translational control in oocyte development.
Cold Spring Harb Perspect Biol. 2011 Sep 1;3(9):a002758. doi: 10.1101/cshperspect.a002758.

本文引用的文献

2
Complex seizure disorder caused by Brunol4 deficiency in mice.
PLoS Genet. 2007 Jul;3(7):e124. doi: 10.1371/journal.pgen.0030124.
3
RNA-binding proteins: modular design for efficient function.
Nat Rev Mol Cell Biol. 2007 Jun;8(6):479-90. doi: 10.1038/nrm2178.
4
5
Sequence-specific binding of single-stranded RNA: is there a code for recognition?
Nucleic Acids Res. 2006;34(17):4943-59. doi: 10.1093/nar/gkl620. Epub 2006 Sep 18.
6
PREDITOR: a web server for predicting protein torsion angle restraints.
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W63-9. doi: 10.1093/nar/gkl341.
7
Mammalian CELF/Bruno-like RNA-binding proteins: molecular characteristics and biological functions.
Biochimie. 2006 May;88(5):515-25. doi: 10.1016/j.biochi.2005.10.011. Epub 2005 Dec 5.
8
Structure of PTB bound to RNA: specific binding and implications for splicing regulation.
Science. 2005 Sep 23;309(5743):2054-7. doi: 10.1126/science.1114066.
9
Bruno-like protein is localized to zebrafish germ plasm during the early cleavage stages.
Gene Expr Patterns. 2006 Jan;6(2):201-5. doi: 10.1016/j.modgep.2005.06.006. Epub 2005 Sep 15.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验