Museum National d'Histoire Naturelle, FRE 3206 CNRS, 61 rue Buffon, Paris Cedex 05, France.
Arch Biochem Biophys. 2010 Feb 1;494(1):32-9. doi: 10.1016/j.abb.2009.11.012. Epub 2009 Nov 15.
Although quinones have been the subject of great interest as possible antimalarial agents, the mechanism of their antimalarial activity is poorly understood. Flavoenzyme electrontransferase-catalyzed redox cycling of quinones, and their inhibition of the antioxidant flavoenzyme glutathione reductase (GR, EC 1.8.1.7) have been proposed as possible mechanisms. Here, we have examined the activity of a number of quinones, including the novel antitumor agent RH1, against the malaria parasite Plasmodium falciparum strain FcB1 in vitro, their single-electron reduction rates by P. falciparum ferredoxin:NADP(+) reductase (PfFNR, EC 1.18.1.2), and their ability to inhibit P. falciparum GR. The multiparameter statistical analysis of our data implies, that the antiplasmodial activity of fully-substituted quinones (n=15) is relatively independent from their one-electron reduction potential (E(7)(1)). The presence of aziridinyl groups in quinone ring increased their antiplasmodial activity. Since aziridinyl-substituted quinones do not possess enhanced redox cycling activity towards PfFNR, we propose that they could act as as DNA-alkylating agents after their net two-electron reduction into aziridinyl-hydroquinones. We found that under the partial anaerobiosis, i.e., at the oxygen concentration below 40-50 microM, this reaction may be carried out by single-electron transferring flavoenzymes present in P. falciparum, like PfFNR. Another parameter increasing the antiplasmodial activity of fully-substituted quinones is an increase in their potency as P. falciparum GR inhibitors, which was revealed using multiparameter regression analysis. To our knowledge, this is the first quantitative demonstration of a link between the antiplasmodial activity of compounds and GR inhibition.
尽管醌类化合物作为可能的抗疟药物一直备受关注,但它们的抗疟活性机制仍不清楚。醌类化合物的黄素酶电子转移催化的氧化还原循环及其对抗氧化黄素酶谷胱甘肽还原酶(GR,EC 1.8.1.7)的抑制作用被认为是可能的机制。在这里,我们研究了一些醌类化合物的活性,包括新型抗肿瘤药物 RH1,对体外疟原虫 Plasmodium falciparum 株 FcB1 的活性,它们被疟原虫铁氧还蛋白:NADP(+)还原酶(PfFNR,EC 1.18.1.2)单电子还原的速率,以及它们抑制疟原虫 GR 的能力。我们数据的多参数统计分析表明,完全取代的醌类化合物(n=15)的抗疟活性相对独立于它们的单电子还原电位(E(7)(1))。醌环中存在氮丙啶基团会增加它们的抗疟活性。由于氮丙啶取代的醌类化合物对 PfFNR 没有增强的氧化还原循环活性,我们提出它们可以在净二电子还原为氮丙啶-对苯二酚后作为 DNA 烷化剂。我们发现,在部分缺氧条件下,即在氧气浓度低于 40-50 μM 时,该反应可以通过存在于疟原虫中的单电子转移黄素酶(如 PfFNR)来进行。另一个增加完全取代的醌类化合物抗疟活性的参数是它们作为疟原虫 GR 抑制剂的效力增加,这是通过多参数回归分析揭示的。据我们所知,这是首次定量证明化合物的抗疟活性与 GR 抑制之间存在联系。