Suppr超能文献

[卵巢癌的新药和靶向治疗药物]

[New drugs and targeted therapeutic agents in ovarian cancer].

作者信息

de La Motte Rouge T, Petrella M-C, Michels J, Even C, Balleyguier C, Duclos J, Mazeron R, Morice P, Pautier P, Lhommé C

机构信息

Institut Gustave-Roussy, Comité de gynécologie, Villejuif, France.

出版信息

Bull Cancer. 2009 Dec;96(12):1215-24. doi: 10.1684/bdc.2009.0988.

Abstract

Ovarian cancers are the leading cause of death from gynaecological malignancies in Western countries. Despite optimal treatment combining surgery and chemotherapy, relapse is observed in the majority of patients. This review aims to present the results of trials having evaluated new drugs in ovarian cancers. Advances in the understanding of cancer biology and more specifically of cell signalling pathways have led to the identification of several potential molecular targets and to the development of new agents directed against these targets. The assessment of targeted therapies is relatively recent in this field. So far, only the results of phase II trials have been published, but many phase III trials are underway. Some targets (HER-2, EGFR) initially regarded as promising have already been abandoned due to the lack of results. The most advanced molecular therapies target angiogenesis (VEGF, VEFGR). PARP and mTOR inhibitors may also represent a significant therapeutic improvement. It remains to confirm the interest of these new approaches by assessing the benefit on overall survival. The goal remains to individualize and to tailor the drugs to the tumour biology, in order to provide personalized treatment to each patient.

摘要

在西方国家,卵巢癌是妇科恶性肿瘤致死的主要原因。尽管采用了手术和化疗相结合的最佳治疗方法,但大多数患者仍会复发。本综述旨在介绍评估卵巢癌新药的试验结果。对癌症生物学,尤其是细胞信号通路认识的进展,已促使人们识别出多个潜在分子靶点,并开发出针对这些靶点的新型药物。在该领域,靶向治疗的评估相对较新。到目前为止,仅发表了II期试验结果,但许多III期试验正在进行中。一些最初被认为有前景的靶点(HER-2、EGFR)由于缺乏结果已被放弃。最先进的分子疗法靶向血管生成(VEGF、VEFGR)。PARP和mTOR抑制剂也可能代表着重大的治疗进展。仍需通过评估对总生存期的益处来确认这些新方法的价值。目标仍然是根据肿瘤生物学特性实现药物个体化和定制化,以便为每位患者提供个性化治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验