Suppr超能文献

从数据中学习的优化问题的正则化技术和次优解。

Regularization techniques and suboptimal solutions to optimization problems in learning from data.

机构信息

Departments of Communications, Computer, and System Sciences and of Computer and Information Science, University of Genova, Genova, Italy.

出版信息

Neural Comput. 2010 Mar;22(3):793-829. doi: 10.1162/neco.2009.05-08-786.

Abstract

Various regularization techniques are investigated in supervised learning from data. Theoretical features of the associated optimization problems are studied, and sparse suboptimal solutions are searched for. Rates of approximate optimization are estimated for sequences of suboptimal solutions formed by linear combinations of n-tuples of computational units, and statistical learning bounds are derived. As hypothesis sets, reproducing kernel Hilbert spaces and their subsets are considered.

摘要

各种正则化技术在有监督的数据学习中得到了研究。研究了相关优化问题的理论特征,并搜索了稀疏次优解。通过对由 n 个计算单元的元组的线性组合形成的次优解序列进行近似优化的速率进行了估计,并得出了统计学习界限。作为假设集,考虑了再生核希尔伯特空间及其子集。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验