Panacos Pharmaceuticals, Inc., 209 Perry Parkway, Suite 7, Gaithersburg, MD 20877, USA.
Virology. 2010 Jan 20;396(2):226-37. doi: 10.1016/j.virol.2009.10.040. Epub 2009 Nov 18.
Human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infection in infants, immunocompromised patients, and the elderly. The RSV fusion (F) protein mediates fusion of the viral envelope with the target cell membrane during virus entry and is a primary target for antiviral drug and vaccine development. The F protein contains two heptad repeat regions, HR1 and HR2. Peptides corresponding to these regions form a six-helix bundle structure that is thought to play a critical role in membrane fusion. However, characterization of six-helix bundle formation in native RSV F protein has been hindered by the fact that a trigger for F protein conformational change has yet to be identified. Here we demonstrate that RSV F protein on the surface of infected cells undergoes a conformational change following exposure to elevated temperature, resulting in the formation of the six-helix bundle structure. We first generated and characterized six-helix bundle-specific antibodies raised against recombinant peptides modeling the RSV F protein six-helix bundle structure. We then used these antibodies as probes to monitor RSV F protein six-helix bundle formation in response to a diverse array of potential triggers of conformational changes. We found that exposure of 'membrane-anchored' RSV F protein to elevated temperature (45-55 degrees C) was sufficient to trigger six-helix bundle formation. Antibody binding to the six-helix bundle conformation was detected by both flow cytometry and cell-surface immunoprecipitation of the RSV F protein. None of the other treatments, including interaction with a number of potential receptors, resulted in significant binding by six-helix bundle-specific antibodies. We conclude that native, untriggered RSV F protein exists in a metastable state that can be converted in vitro to the more stable, fusogenic six-helix bundle conformation by an increase in thermal energy. These findings help to better define the mechanism of RSV F-mediated membrane fusion and have important implications for the identification of therapeutic strategies and vaccines targeting RSV F protein conformational changes.
人呼吸道合胞病毒(RSV)是婴儿、免疫功能低下患者和老年人严重下呼吸道感染的主要原因。RSV 融合(F)蛋白在病毒进入时介导病毒包膜与靶细胞膜融合,是抗病毒药物和疫苗开发的主要靶点。F 蛋白包含两个七肽重复区,HR1 和 HR2。这些区域对应的肽形成六螺旋束结构,该结构被认为在膜融合中起关键作用。然而,由于尚未确定触发 F 蛋白构象变化的触发因素,因此对天然 RSV F 蛋白中六螺旋束形成的特性进行了描述。在这里,我们证明了感染细胞表面的 RSV F 蛋白在暴露于高温后会发生构象变化,从而形成六螺旋束结构。我们首先生成并表征了针对模拟 RSV F 蛋白六螺旋束结构的重组肽的六螺旋束特异性抗体。然后,我们使用这些抗体作为探针来监测 RSV F 蛋白对各种潜在构象变化触发因素的六螺旋束形成。我们发现,“膜锚定”的 RSV F 蛋白暴露于高温(45-55°C)足以触发六螺旋束形成。通过流式细胞术和 RSV F 蛋白的细胞表面免疫沉淀检测到对六螺旋束构象的抗体结合。包括与许多潜在受体的相互作用在内的其他处理均未导致六螺旋束特异性抗体的显著结合。我们得出结论,天然的、未触发的 RSV F 蛋白处于亚稳态,可以通过热能增加在体外转化为更稳定的、融合性的六螺旋束构象。这些发现有助于更好地定义 RSV F 介导的膜融合机制,并对鉴定针对 RSV F 蛋白构象变化的治疗策略和疫苗具有重要意义。