Suppr超能文献

大鼠升支 Henle 袢的数学模型。I. 共转运蛋白功能。

A mathematical model of rat ascending Henle limb. I. Cotransporter function.

出版信息

Am J Physiol Renal Physiol. 2010 Mar;298(3):F512-24. doi: 10.1152/ajprenal.00230.2009. Epub 2009 Nov 18.

Abstract

Kinetic models of Na+-K+-2Cl- costransporter (NKCC2) and K+-Cl- cotransporter (KCC4), two of the key cotransporters of the Henle limb, are fashioned with inclusion of terms representing binding and transport of NH4+. The models are simplified using assumptions of equilibrium ion binding, binding symmetry, and identity of Cl- binding sites. Model parameters are selected to be consistent with flux data from expression of these transporters in oocytes, specifically inwardly directed coupled transport of rubidium. In the analysis of these models, it is found that despite the simplifying assumptions to reduce the number of model parameters, neither model is uniquely determined by the data. For NKCC or KCC there are two- or three-parameter families of "optimal" solutions. As a consequence, one may specify several carrier translocation rates and/or ion affinities before fitting the remaining coefficients to the data, with no loss of fidelity in simulating the experiments. Model calculations suggest that with respect to NKCC2 near its operating point, the curve of ion flux as a function of cell Cl- is steep, and with respect to KCC4, its curve of ion flux as a function of peritubular K+ is also steep. The implication is that the kinetics are suitable for these two transporters in series to act as a sensor for peritubular K+, to modulate AHL Na+ reabsorption, with cytosolic Cl- as the intermediate variable. The models also reveal the potential for luminal NH4+ to be a potent catalyst for NKCC2 Na+ reabsorption, provided suitable exit mechanisms for NH4+ (from cell-to-lumen) are operative. It is found that KCC4 is likely to augment the secretory NH4+ flux, with peritubular NH4+ uptake driven by the cell-to-blood K+ gradient.

摘要

Henle 袢中两种关键协同转运体(NKCC2 和 KCC4)的 Na+-K+-2Cl-协同转运体(NKCC2)和 K+-Cl-协同转运体(KCC4)的动力学模型,是通过包含代表 NH4+结合和转运的项来构建的。这些模型通过离子结合平衡、结合对称性和 Cl-结合位点同一性的假设进行简化。模型参数的选择是为了与这些转运体在卵母细胞中表达的通量数据一致,特别是铷的内向偶联转运。在这些模型的分析中,发现尽管采用了简化假设来减少模型参数的数量,但数据并不能唯一确定模型。对于 NKCC 或 KCC,存在两个或三个参数的“最佳”解族。因此,在拟合其余系数以适应数据之前,可以指定几个载体转运速率和/或离子亲和力,而不会对模拟实验的保真度造成任何损失。模型计算表明,对于 NKCC2 接近其工作点,离子通量与细胞 Cl-的关系曲线很陡峭,对于 KCC4,其离子通量与管周 K+的关系曲线也很陡峭。这意味着动力学适合这两种转运体串联作为管周 K+的传感器,调节 AHL Na+重吸收,以胞质 Cl-为中间变量。这些模型还揭示了腔 NH4+作为 NKCC2 Na+重吸收的有力催化剂的潜力,前提是 NH4+(从细胞到腔)的合适出口机制是可行的。结果发现,KCC4 可能会增强分泌 NH4+通量,管周 NH4+摄取由细胞到血液 K+梯度驱动。

相似文献

1
A mathematical model of rat ascending Henle limb. I. Cotransporter function.
Am J Physiol Renal Physiol. 2010 Mar;298(3):F512-24. doi: 10.1152/ajprenal.00230.2009. Epub 2009 Nov 18.
2
A mathematical model of rat ascending Henle limb. II. Epithelial function.
Am J Physiol Renal Physiol. 2010 Mar;298(3):F525-42. doi: 10.1152/ajprenal.00231.2009. Epub 2009 Nov 18.
3
A mathematical model of rat ascending Henle limb. III. Tubular function.
Am J Physiol Renal Physiol. 2010 Mar;298(3):F543-56. doi: 10.1152/ajprenal.00232.2009. Epub 2009 Nov 18.
4
A possible catalytic role for NH4+ in Na+ reabsorption across the thick ascending limb.
Am J Physiol Renal Physiol. 2010 Mar;298(3):F510-1. doi: 10.1152/ajprenal.00678.2009. Epub 2009 Dec 9.
6
NO decreases thick ascending limb chloride absorption by reducing Na(+)-K(+)-2Cl(-) cotransporter activity.
Am J Physiol Renal Physiol. 2001 Nov;281(5):F819-25. doi: 10.1152/ajprenal.2001.281.5.F819.
8
Renal Na-K-Cl cotransporter NKCC2 in Dahl salt-sensitive rats.
J Hypertens. 2002 Apr;20(4):721-7. doi: 10.1097/00004872-200204000-00031.
10
Parameter estimation for mathematical models of NKCC2 cotransporter isoforms.
Am J Physiol Renal Physiol. 2009 Feb;296(2):F369-81. doi: 10.1152/ajprenal.00096.2008. Epub 2008 Nov 26.

引用本文的文献

1
Flow-dependent transport processes 2024: filtration, absorption, and secretion.
Am J Physiol Renal Physiol. 2025 May 1;328(5):F627-F637. doi: 10.1152/ajprenal.00303.2024. Epub 2025 Mar 17.
2
A brief history of the cortical thick ascending limb: a systems-biology perspective.
Am J Physiol Renal Physiol. 2025 Jan 1;328(1):F82-F94. doi: 10.1152/ajprenal.00243.2024. Epub 2024 Nov 19.
3
A mathematical model of the rat kidney. III. Ammonia transport.
Am J Physiol Renal Physiol. 2021 Jun 1;320(6):F1059-F1079. doi: 10.1152/ajprenal.00008.2021. Epub 2021 Mar 29.
4
Pulsatile flow through idealized renal tubules: Fluid-structure interaction and dynamic pathologies.
Math Biosci Eng. 2019 Dec 17;17(2):1787-1807. doi: 10.3934/mbe.2020094.
6
Mathematical model reveals role of nucleotide signaling in airway surface liquid homeostasis and its dysregulation in cystic fibrosis.
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):E7272-E7281. doi: 10.1073/pnas.1617383114. Epub 2017 Aug 14.
7
The renal cortical collecting duct: a secreting epithelium?
J Physiol. 2016 Oct 15;594(20):5991-6008. doi: 10.1113/JP272877. Epub 2016 Aug 13.
9
Mechanisms of astrocytic K(+) clearance and swelling under high extracellular K(+) concentrations.
J Physiol Sci. 2016 Mar;66(2):127-42. doi: 10.1007/s12576-015-0404-5. Epub 2015 Oct 27.
10
Parameter estimation for mathematical models of a nongastric H+(Na+)-K(+)(NH4+)-ATPase.
Am J Physiol Renal Physiol. 2015 Sep 1;309(5):F434-46. doi: 10.1152/ajprenal.00539.2014. Epub 2015 Jun 24.

本文引用的文献

1
Parameter estimation for mathematical models of NKCC2 cotransporter isoforms.
Am J Physiol Renal Physiol. 2009 Feb;296(2):F369-81. doi: 10.1152/ajprenal.00096.2008. Epub 2008 Nov 26.
2
Molecular mechanisms of renal ammonia transport.
Annu Rev Physiol. 2007;69:317-40. doi: 10.1146/annurev.physiol.69.040705.142215.
3
A mathematical model of rat distal convoluted tubule. I. Cotransporter function in early DCT.
Am J Physiol Renal Physiol. 2005 Oct;289(4):F699-720. doi: 10.1152/ajprenal.00043.2005. Epub 2005 Apr 26.
4
Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters.
Physiol Rev. 2005 Apr;85(2):423-93. doi: 10.1152/physrev.00011.2004.
5
Ammonium transport and pH regulation by K(+)-Cl(-) cotransporters.
Am J Physiol Renal Physiol. 2003 Jul;285(1):F68-78. doi: 10.1152/ajprenal.00032.2003. Epub 2003 Mar 25.
6
Functional properties of the apical Na+-K+-2Cl- cotransporter isoforms.
J Biol Chem. 2002 Mar 29;277(13):11004-12. doi: 10.1074/jbc.M110442200. Epub 2002 Jan 14.
7
Functional comparison of the K+-Cl- cotransporters KCC1 and KCC4.
J Biol Chem. 2000 Sep 29;275(39):30326-34. doi: 10.1074/jbc.M003112200.
8
A mathematical model of the outer medullary collecting duct of the rat.
Am J Physiol Renal Physiol. 2000 Jul;279(1):F24-45. doi: 10.1152/ajprenal.2000.279.1.F24.
9
Permeation properties of inward-rectifier potassium channels and their molecular determinants.
J Gen Physiol. 2000 Apr;115(4):391-404. doi: 10.1085/jgp.115.4.391.
10
A kinetic model of the thiazide-sensitive Na-Cl cotransporter.
Am J Physiol. 1999 Jun;276(6):F952-9. doi: 10.1152/ajprenal.1999.276.6.F952.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验