Weinstein A M
Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York 10021, USA.
Am J Physiol Renal Physiol. 2000 Jul;279(1):F24-45. doi: 10.1152/ajprenal.2000.279.1.F24.
A mathematical model of the outer medullary collecting duct (OMCD) has been developed, consisting of alpha-intercalated cells and a paracellular pathway, and which includes Na(+), K(+), Cl(-), HCO(3)(-), CO(2), H(2)CO(3), phosphate, ammonia, and urea. Proton secretion across the luminal cell membrane is mediated by both H(+)-ATPase and H-K-ATPase, with fluxes through the H-K-ATPase given by a previously developed kinetic model (Weinstein AM. Am J Physiol Renal Physiol 274: F856-F867, 1998). The flux across each ATPase is substantial, and variation in abundance of either pump can be used to control OMCD proton secretion. In comparison with the H(+)-ATPase, flux through the H-K-ATPase is relatively insensitive to changes in lumen pH, so as luminal acidification proceeds, proton secretion shifts toward this pathway. Peritubular HCO(3)(-) exit is via a conductive pathway and via the Cl(-)/HCO(3)(-) exchanger, AE1. To represent AE1, a kinetic model has been developed based on transport studies obtained at 38 degrees C in red blood cells. (Gasbjerg PK, Knauf PA, and Brahm J. J Gen Physiol 108: 565-575, 1996; Knauf PA, Gasbjerg PK, and Brahm J. J Gen Physiol 108: 577-589, 1996). Model calculations indicate that if all of the chloride entry via AE1 recycles across a peritubular chloride channel and if this channel is anything other than highly selective for chloride, then it should conduct a substantial fraction of the bicarbonate exit. Since both luminal membrane proton pumps are sensitive to small changes in cytosolic pH, variation in density of either AE1 or peritubular anion conductance can modulate OMCD proton secretory rate. With respect to the OMCD in situ, available buffer is predicted to be abundant, including delivered HCO(3)(-) and HPO(4)(2-), as well as peritubular NH(3). Thus, buffer availability is unlikely to exert a regulatory role in total proton secretion by this tubule segment.
已构建了一个外髓集合管(OMCD)的数学模型,该模型由α - 闰细胞和细胞旁途径组成,包含Na⁺、K⁺、Cl⁻、HCO₃⁻、CO₂、H₂CO₃、磷酸盐、氨和尿素。跨管腔细胞膜的质子分泌由H⁺ - ATP酶和H - K - ATP酶介导,通过H - K - ATP酶的通量由先前开发的动力学模型给出(Weinstein AM。《美国生理学杂志:肾脏生理学》274:F856 - F867,1998)。每个ATP酶的通量都很大,任何一种泵丰度的变化都可用于控制OMCD的质子分泌。与H⁺ - ATP酶相比,通过H - K - ATP酶的通量对管腔pH的变化相对不敏感,因此随着管腔酸化的进行,质子分泌会转向该途径。肾小管周围HCO₃⁻的排出通过一条传导途径以及Cl⁻/HCO₃⁻交换体AE1进行。为了描述AE1,基于在38℃下对红细胞进行的转运研究开发了一个动力学模型。(Gasbjerg PK,Knauf PA,和Brahm J。《普通生理学杂志》108:565 - 575,1996;Knauf PA,Gasbjerg PK,和Brahm J。《普通生理学杂志》108:577 - 589,1996)。模型计算表明,如果通过AE1进入的所有氯离子都通过肾小管周围的氯离子通道循环,并且如果该通道对氯离子的选择性不是非常高,那么它应该传导相当一部分的碳酸氢根排出。由于两个管腔膜质子泵都对胞质pH的微小变化敏感,AE1或肾小管周围阴离子传导密度的变化可以调节OMCD的质子分泌速率。就原位OMCD而言,预计可用缓冲剂很丰富,包括输送来的HCO₃⁻和HPO₄²⁻,以及肾小管周围的NH₃。因此,缓冲剂的可用性不太可能对该肾小管段的总质子分泌发挥调节作用。