Institute of Polymer Science and Technology, (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain.
Phys Chem Chem Phys. 2009 Dec 14;11(46):10860-6. doi: 10.1039/b913262g. Epub 2009 Oct 2.
The physical properties of many multiphase systems are determined by coarsening phenomena. From raindrops to polycrystal grains and foams, the formation and stability of these systems continuously evolve towards lower-energy configurations through events such as coalescence, Ostwald ripening and drainage. Here we propose a procedure to identify and characterise key topological transformations of coarsening phenomena using a physically-based fluid dynamic framework. In situ, real-time foaming processes of a polymeric matrix reinforced with two morphologically different nanofillers, carbon nanotubes and graphene sheets were observed by synchrotron X-ray radioscopy. We obtained detailed information on the evolution of the growth patterns and coarsening events. Filled samples showed differences in both trend and speed compared with the unfilled sample. Furthermore, we found different dominating coarsening phenomena due to the wetting nature of carbon nanoparticles. Our procedure can be extended to sequences of any type of 2D projection or 3D images and to other multiphase systems.
许多多相系统的物理性质取决于粗化现象。从雨滴到多晶体颗粒和泡沫,这些系统通过合并、奥斯特瓦尔德熟化和排水等事件,不断朝着更低能量的构型演化和稳定。在这里,我们提出了一种使用基于物理的流体动力学框架来识别和描述粗化现象关键拓扑转变的方法。通过同步加速器 X 射线射线照相术,原位实时观察了两种形态不同的纳米填料(碳纳米管和石墨烯片)增强聚合物基体的发泡过程。我们获得了关于生长模式和粗化事件演变的详细信息。与未填充的样品相比,填充样品的趋势和速度存在差异。此外,我们发现由于碳纳米粒子的润湿性,不同的主导粗化现象。我们的方法可以扩展到任何类型的二维投影或三维图像序列以及其他多相系统。