Department Chemie and Catalysis Research Center, Technische Universität München, 85747 Garching, Germany.
Phys Chem Chem Phys. 2009 Dec 14;11(46):10955-63. doi: 10.1039/b916855a. Epub 2009 Oct 14.
Subsurface carbon species of Pd catalysts recently attracted considerable attention because they affect the selectivity of hydrogenation reactions. We calculated the migration of C atoms from the Pd(111) surface to interstitial subsurface sites to be energetically favorable. Yet, thermodynamically more stable is a graphene-like phase on the Pd surface. Applying a density functional method on periodic models, we explored the formation of C(n) (n = 2-4) clusters on Pd(111). At low coverage, carbon monomers on the surface and at octahedral subsurface sites were calculated to be more stable than dimer species, C(2), on the surface. However, at a C coverage of about half a monolayer, the formation of C(2) and C(3) species, precursors of a graphene phase, becomes competitive with migration of C monomers to octahedral subsurface sites. While discussing these findings, we also addressed the problem of C(1) formation on Pd catalysts from simple organics.
最近,Pd 催化剂的亚表面碳物种引起了相当大的关注,因为它们影响氢化反应的选择性。我们计算出 C 原子从 Pd(111)表面迁移到间隙亚表面位置在能量上是有利的。然而,在热力学上,Pd 表面上更稳定的是类石墨烯相。通过在周期性模型上应用密度泛函方法,我们研究了 C(n)(n = 2-4)团簇在 Pd(111)上的形成。在低覆盖度下,表面上的碳原子单体和八面体亚表面位置上的单体比表面上的二聚体 C(2)更稳定。然而,在 C 覆盖率约为单层的一半时,C(2)和 C(3)物种的形成(石墨烯相的前体)变得与 C 单体向八面体亚表面位置的迁移竞争。在讨论这些发现的同时,我们还解决了从简单有机物在 Pd 催化剂上形成 C(1)的问题。