Suppr超能文献

RNA 聚合酶-抗生素复合物的结构。

Structures of RNA polymerase-antibiotic complexes.

机构信息

Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854, USA.

出版信息

Curr Opin Struct Biol. 2009 Dec;19(6):715-23. doi: 10.1016/j.sbi.2009.10.010. Epub 2009 Nov 18.

Abstract

Inhibition of bacterial RNA polymerase (RNAP) is an established strategy for antituberculosis therapy and broad-spectrum antibacterial therapy. Crystal structures of RNAP-inhibitor complexes are available for four classes of antibiotics: rifamycins, sorangicin, streptolydigin, and myxopyronin. The structures define three different targets, and three different mechanisms, for inhibition of bacterial RNAP: (1) rifamycins and sorangicin bind near the RNAP active center and block extension of RNA products; (2) streptolydigin interacts with a target that overlaps the RNAP active center and inhibits conformational cycling of the RNAP active center; and (3) myxopyronin interacts with a target remote from the RNAP active center and functions by interfering with opening of the RNAP active-center cleft to permit entry and unwinding of DNA and/or by interfering with interactions between RNAP and the DNA template strand. The structures enable construction of homology models of pathogen RNAP-antibiotic complexes, enable in silico screening for new antibacterial agents, and enable rational design of improved antibacterial agents.

摘要

抑制细菌 RNA 聚合酶(RNAP)是抗结核治疗和广谱抗菌治疗的一种既定策略。有四类抗生素的 RNAP-抑制剂复合物的晶体结构:利福霉素类、索拉菌素、链霉溶菌素和粘菌素。这些结构定义了抑制细菌 RNAP 的三种不同的靶标和三种不同的机制:(1)利福霉素类和索拉菌素结合在 RNAP 活性中心附近,阻止 RNA 产物的延伸;(2)链霉溶菌素与重叠 RNAP 活性中心的靶标相互作用,抑制 RNAP 活性中心的构象循环;(3)粘菌素与远离 RNAP 活性中心的靶标相互作用,通过干扰 RNAP 活性中心裂隙的打开来干扰 DNA 的进入和解旋,以及/或干扰 RNAP 与 DNA 模板链之间的相互作用,从而发挥作用。这些结构使我们能够构建病原体 RNAP-抗生素复合物的同源模型,能够进行新的抗菌药物的计算机筛选,并能够合理设计改进的抗菌药物。

相似文献

1
Structures of RNA polymerase-antibiotic complexes.
Curr Opin Struct Biol. 2009 Dec;19(6):715-23. doi: 10.1016/j.sbi.2009.10.010. Epub 2009 Nov 18.
3
The RNA polymerase "switch region" is a target for inhibitors.
Cell. 2008 Oct 17;135(2):295-307. doi: 10.1016/j.cell.2008.09.033.
4
The antibiotic sorangicin A inhibits promoter DNA unwinding in a rifampicin-resistant RNA polymerase.
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30423-30432. doi: 10.1073/pnas.2013706117. Epub 2020 Nov 16.
5
Transcription inactivation through local refolding of the RNA polymerase structure.
Nature. 2009 Jan 15;457(7227):332-5. doi: 10.1038/nature07510. Epub 2008 Oct 22.
6
Mutations of bacterial RNA polymerase leading to resistance to microcin j25.
J Biol Chem. 2002 Dec 27;277(52):50867-75. doi: 10.1074/jbc.M209425200. Epub 2002 Oct 24.
7
Transcription inhibition by the depsipeptide antibiotic salinamide A.
Elife. 2014 Apr 30;3:e02451. doi: 10.7554/eLife.02451.
8
Advanced mutasynthesis studies on the natural α-pyrone antibiotic myxopyronin from Myxococcus fulvus.
Chembiochem. 2015 Apr 13;16(6):946-53. doi: 10.1002/cbic.201402666. Epub 2015 Mar 10.
9
Rifamycins do not function by allosteric modulation of binding of Mg2+ to the RNA polymerase active center.
Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14820-5. doi: 10.1073/pnas.0802822105. Epub 2008 Sep 11.

引用本文的文献

2
Antimicrobial activity of metal-based nanoparticles: a mini-review.
Biometals. 2024 Aug;37(4):773-801. doi: 10.1007/s10534-023-00573-y. Epub 2024 Jan 29.
4
Siderophore conjugation with cleavable linkers boosts the potency of RNA polymerase inhibitors against multidrug-resistant .
Chem Sci. 2023 Apr 26;14(20):5490-5502. doi: 10.1039/d2sc06850h. eCollection 2023 May 24.
5
Pseudouridine-Modifying Enzymes SapB and SapH Control Entry into the Pseudouridimycin Biosynthetic Pathway.
ACS Chem Biol. 2023 Apr 21;18(4):794-802. doi: 10.1021/acschembio.2c00826. Epub 2023 Apr 2.
6
Antibiotics and Bacterial Resistance-A Short Story of an Endless Arms Race.
Int J Mol Sci. 2023 Mar 17;24(6):5777. doi: 10.3390/ijms24065777.
7
How to Shut Down Transcription in Archaea during Virus Infection.
Microorganisms. 2022 Sep 13;10(9):1824. doi: 10.3390/microorganisms10091824.
8
GPI0363 inhibits the interaction of RNA polymerase with DNA in .
RSC Adv. 2019 Nov 21;9(65):37889-37894. doi: 10.1039/c9ra06844a. eCollection 2019 Nov 19.
9
Disrupting Transcription and Folate Biosynthesis Leads to Synergistic Suppression of Escherichia coli Growth.
ChemMedChem. 2022 May 18;17(10):e202200075. doi: 10.1002/cmdc.202200075. Epub 2022 Mar 15.

本文引用的文献

1
Total synthesis of (+)-sorangicin A.
J Am Chem Soc. 2009 Sep 2;131(34):12109-11. doi: 10.1021/ja906115a.
2
A movie of the RNA polymerase nucleotide addition cycle.
Curr Opin Struct Biol. 2009 Jun;19(3):294-9. doi: 10.1016/j.sbi.2009.04.005. Epub 2009 May 27.
3
The RNA polymerase "switch region" is a target for inhibitors.
Cell. 2008 Oct 17;135(2):295-307. doi: 10.1016/j.cell.2008.09.033.
4
Transcription inactivation through local refolding of the RNA polymerase structure.
Nature. 2009 Jan 15;457(7227):332-5. doi: 10.1038/nature07510. Epub 2008 Oct 22.
5
Rifamycins do not function by allosteric modulation of binding of Mg2+ to the RNA polymerase active center.
Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14820-5. doi: 10.1073/pnas.0802822105. Epub 2008 Sep 11.
8
Structural basis for substrate loading in bacterial RNA polymerase.
Nature. 2007 Jul 12;448(7150):163-8. doi: 10.1038/nature05931. Epub 2007 Jun 20.
9
Structural basis for transcription elongation by bacterial RNA polymerase.
Nature. 2007 Jul 12;448(7150):157-62. doi: 10.1038/nature05932. Epub 2007 Jun 20.
10
Progress in targeting bacterial transcription.
Drug Discov Today. 2007 Mar;12(5-6):200-8. doi: 10.1016/j.drudis.2007.01.005. Epub 2007 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验