Belogurov Georgiy A, Vassylyeva Marina N, Sevostyanova Anastasiya, Appleman James R, Xiang Alan X, Lira Ricardo, Webber Stephen E, Klyuyev Sergiy, Nudler Evgeny, Artsimovitch Irina, Vassylyev Dmitry G
Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, USA.
Nature. 2009 Jan 15;457(7227):332-5. doi: 10.1038/nature07510. Epub 2008 Oct 22.
Structural studies of antibiotics not only provide a shortcut to medicine allowing for rational structure-based drug design, but may also capture snapshots of dynamic intermediates that become 'frozen' after inhibitor binding. Myxopyronin inhibits bacterial RNA polymerase (RNAP) by an unknown mechanism. Here we report the structure of dMyx--a desmethyl derivative of myxopyronin B--complexed with a Thermus thermophilus RNAP holoenzyme. The antibiotic binds to a pocket deep inside the RNAP clamp head domain, which interacts with the DNA template in the transcription bubble. Notably, binding of dMyx stabilizes refolding of the beta'-subunit switch-2 segment, resulting in a configuration that might indirectly compromise binding to, or directly clash with, the melted template DNA strand. Consistently, footprinting data show that the antibiotic binding does not prevent nucleation of the promoter DNA melting but instead blocks its propagation towards the active site. Myxopyronins are thus, to our knowledge, a first structurally characterized class of antibiotics that target formation of the pre-catalytic transcription initiation complex-the decisive step in gene expression control. Notably, mutations designed in switch-2 mimic the dMyx effects on promoter complexes in the absence of antibiotic. Overall, our results indicate a plausible mechanism of the dMyx action and a stepwise pathway of open complex formation in which core enzyme mediates the final stage of DNA melting near the transcription start site, and that switch-2 might act as a molecular checkpoint for DNA loading in response to regulatory signals or antibiotics. The universally conserved switch-2 may have the same role in all multisubunit RNAPs.
抗生素的结构研究不仅为药物研发提供了一条捷径,有助于基于结构的合理药物设计,还可能捕捉到抑制剂结合后“冻结”的动态中间体的瞬间状态。粘霉素通过未知机制抑制细菌RNA聚合酶(RNAP)。在此,我们报告了去甲基化的粘霉素B衍生物dMyx与嗜热栖热菌RNAP全酶复合物的结构。该抗生素结合到RNAP钳头结构域内部深处的一个口袋中,该口袋与转录泡中的DNA模板相互作用。值得注意的是,dMyx的结合稳定了β'亚基开关2片段的重折叠,导致一种可能间接损害与解链模板DNA链的结合或直接与之冲突的构象。一致地,足迹数据表明抗生素结合并不阻止启动子DNA解链的起始,但会阻止其向活性位点的传播。据我们所知,粘霉素是第一类在结构上得到表征的靶向催化前转录起始复合物形成的抗生素,而这是基因表达控制中的决定性步骤。值得注意的是,在开关2中设计的突变在没有抗生素的情况下模拟了dMyx对启动子复合物的影响。总体而言,我们的结果表明了dMyx作用的一种合理机制以及开放复合物形成的逐步途径,其中核心酶介导转录起始位点附近DNA解链的最后阶段,并且开关2可能作为响应调节信号或抗生素的DNA加载的分子检查点。普遍保守的开关2在所有多亚基RNAP中可能具有相同的作用。