Suppr超能文献

一种基于纵向二维应变的节段性壁运动自动评估新工具:以色列超声心动图研究组的多中心研究。

A new tool for automatic assessment of segmental wall motion based on longitudinal 2D strain: a multicenter study by the Israeli Echocardiography Research Group.

机构信息

Soroka University Medical Center, Beer Sheva, Israel.

出版信息

Circ Cardiovasc Imaging. 2010 Jan;3(1):47-53. doi: 10.1161/CIRCIMAGING.108.841874. Epub 2009 Nov 19.

Abstract

BACKGROUND

Identification and quantification of segmental left ventricular wall motion abnormalities on echocardiograms is of paramount clinical importance but is still performed by a subjective visual method. We constructed an automatic tool for assessment of wall motion based on longitudinal strain.

METHODS AND RESULTS

Echocardiograms of 105 patients (3 apical views) were blindly analyzed by 12 experienced readers. Visual segmental scores (VSS) and peak systolic longitudinal strain were assigned to each of 18 segments per patient. Ranges of peak systolic longitudinal strain that best fit VSS (by receiver operating characteristic analysis) were used to generate automatic segmental scores (ASS). Comparisons of ASS and VSS were performed on 1952 analyzable segments. There was agreement of wall motion scores between both methods in 89.6% of normal, 39.5% of hypokinetic, and 69.4% of akinetic segments. Correlation between methods was r=0.63 (P<0.0001). Interobserver and intraobserver reliability using interclass correlation for scoring segmental wall motion into 3 scores by ASS was 0.82 and 0.83 and by VSS 0.70 and 0.69, respectively. Compared with VSS (majority rule), ASS had a sensitivity, specificity, and accuracy of 87%, 85%, and 86%, respectively. ASS and VSS had similar success rates for correct identification of wall motion abnormalities in territories supplied by culprit arteries. VSS had greater specificity and positive predictive values, whereas ASS had higher sensitivity and negative predictive values for identifying the culprit artery.

CONCLUSIONS

Automatic quantification of wall motion on echocardiograms by this tool performs as well as visual analysis by experienced echocardiographers, with a greater reliability and similar agreement to angiographic findings.

摘要

背景

在超声心动图上识别和量化节段性左心室壁运动异常具有至关重要的临床意义,但目前仍采用主观的视觉方法进行。我们构建了一种基于纵向应变的自动评估壁运动的工具。

方法和结果

对 105 例患者(3 个心尖视图)的超声心动图进行了盲法分析,由 12 名有经验的读者进行分析。为每位患者的 18 个节段分配了视觉节段评分(VSS)和收缩期峰值纵向应变。通过接受者操作特征分析,确定与 VSS 最佳匹配的峰值纵向应变范围,用于生成自动节段评分(ASS)。在 1952 个可分析的节段上比较了 ASS 和 VSS。在正常、运动减退和无运动节段中,两种方法的壁运动评分一致性分别为 89.6%、39.5%和 69.4%。两种方法之间的相关性为 r=0.63(P<0.0001)。使用 ASS 将节段壁运动分为 3 个评分的组内相关系数为 0.82,VSS 为 0.70,分别为观察者间和观察者内的可靠性。与 VSS(多数规则)相比,ASS 的敏感性、特异性和准确性分别为 87%、85%和 86%。ASS 和 VSS 在识别罪犯血管供血区域壁运动异常方面具有相似的成功率。VSS 具有更高的特异性和阳性预测值,而 ASS 则具有更高的敏感性和阴性预测值,用于识别罪犯血管。

结论

该工具对超声心动图上的壁运动进行自动定量与有经验的超声心动图医师的视觉分析一样准确,具有更高的可靠性和与血管造影结果相似的一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验