The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 7JE, U.K.
Biotechnol Prog. 2010 Jan-Feb;26(1):118-26. doi: 10.1002/btpr.319.
In this work, we describe the design of an immobilized enzyme microreactor (IEMR) for use in transketolase (TK) bioconversion process characterization. The prototype microreactor is based on a 200-microm ID fused silica capillary for quantitative kinetic analysis. The concept is based on the reversible immobilization of His(6)-tagged enzymes via Ni-NTA linkage to surface derivatized silica. For the initial microreactor design, the mode of operation is a stop-flow analysis which promotes higher degrees of conversion. Kinetics for the immobilized TK-catalysed synthesis of L-erythrulose from substrates glycolaldehyde (GA) and hydroxypyruvate (HPA) were evaluated based on a Michaelis-Menten model. Results show that the TK kinetic parameters in the IEMR (V(max(app)) = 0.1 +/- 0.02 mmol min(-1), K(m(app)) = 26 +/- 4 mM) are comparable with those measured in free solution. Furthermore, the k(cat) for the microreactor of 4.1 x 10(5) s(-1) was close to the value for the bioconversion in free solution. This is attributed to the controlled orientation and monolayer surface coverage of the His(6)-immobilized TK. Furthermore, we show quantitative elution of the immobilized TK and the regeneration and reuse of the derivatized capillary over five cycles. The ability to quantify kinetic parameters of engineered enzymes at this scale has benefits for the rapid and parallel evaluation of evolved enzyme libraries for synthetic biology applications and for the generation of kinetic models to aid bioconversion process design and bioreactor selection as a more efficient alternative to previously established microwell-based systems for TK bioprocess characterization.
在这项工作中,我们描述了一种用于转酮醇酶(TK)生物转化过程特性研究的固定化酶微反应器(IEMR)的设计。该原型微反应器基于 200 微米 ID 的熔融石英毛细管,用于定量动力学分析。该概念基于通过 Ni-NTA 键合将 His(6)标记的酶可逆固定在表面衍生化的硅胶上。对于初始微反应器设计,操作模式是停流分析,可促进更高程度的转化。基于 Michaelis-Menten 模型评估了固定化 TK 催化的由甘油醛(GA)和羟丙酮酸(HPA)合成 L-赤藓醇的反应动力学。结果表明,在 IEMR 中 TK 的动力学参数(V(max(app))= 0.1 +/- 0.02 mmol min(-1),K(m(app))= 26 +/- 4 mM)与在游离溶液中测量的值相当。此外,微反应器的 k(cat)为 4.1 x 10(5)s(-1),接近于游离溶液中生物转化的 k(cat)。这归因于 His(6)固定化 TK 的受控取向和单层表面覆盖率。此外,我们展示了固定化 TK 的定量洗脱以及衍生化毛细管的再生和重复使用超过五个循环。在这种规模上量化工程酶动力学参数的能力,对于快速和并行评估用于合成生物学应用的进化酶文库具有益处,并且对于生成有助于生物转化过程设计和生物反应器选择的动力学模型具有益处,作为用于 TK 生物过程特性研究的先前建立的微井系统的更有效替代方案。