Suppr超能文献

从离焦视频序列中进行虚拟对焦和深度估计。

Virtual focus and depth estimation from defocused video sequences.

机构信息

Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607-7053, USA.

出版信息

IEEE Trans Image Process. 2010 Mar;19(3):668-79. doi: 10.1109/TIP.2009.2036708. Epub 2009 Nov 20.

Abstract

In this paper, we present a novel method for virtual focus and object depth estimation from defocused video captured by a moving camera. We use the term virtual focus to refer to a new approach for producing in-focus image sequences by processing blurred videos captured by out-of-focus cameras. Our method relies on the concept of Depth-from-Defocus (DFD) for virtual focus estimation. However, the proposed approach overcomes limitations of DFD by reformulating the problem in a moving-camera scenario. We introduce the interframe image motion model, from which the relationship between the camera motion and blur characteristics can be formed. This relationship subsequently leads to a new method for blur estimation. We finally rely on the blur estimation to develop the proposed technique for object depth estimation and focused video reconstruction. The proposed approach can be utilized to correct out-of-focus video sequences and can potentially replace the expensive apparatus required for auto-focus adjustments currently employed in many camera devices. The performance of the proposed algorithm is demonstrated through error analysis and computer simulated experiments.

摘要

本文提出了一种从失焦视频中提取虚拟焦点和目标深度的新方法,该方法使用虚拟焦点来指代一种通过处理失焦相机拍摄的模糊视频来生成清晰图像序列的新方法。我们的方法依赖于离焦深度估计(DFD)的概念来进行虚拟焦点估计。然而,通过在运动相机场景中重新表述问题,所提出的方法克服了 DFD 的局限性。我们引入了帧间图像运动模型,从中可以形成相机运动和模糊特征之间的关系。这种关系随后导致了一种新的模糊估计方法。最后,我们依赖于模糊估计来开发用于目标深度估计和聚焦视频重建的建议技术。所提出的方法可用于校正失焦视频序列,并可能替代目前许多相机设备中用于自动对焦调整的昂贵设备。通过误差分析和计算机模拟实验证明了所提出算法的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验