Suppr超能文献

LBD 转录因子家族成员抑制花色素苷的合成,并影响拟南芥的其他氮响应。

Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis.

机构信息

Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany.

出版信息

Plant Cell. 2009 Nov;21(11):3567-84. doi: 10.1105/tpc.109.067041. Epub 2009 Nov 20.

Abstract

Nitrogen (N) and nitrate (NO(3)(-)) per se regulate many aspects of plant metabolism, growth, and development. N/NO(3)(-) also suppresses parts of secondary metabolism, including anthocyanin synthesis. Molecular components for this repression are unknown. We report that three N/NO(3)(-)-induced members of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) gene family of transcription factors (LBD37, LBD38, and LBD39) act as negative regulators of anthocyanin biosynthesis in Arabidopsis thaliana. Overexpression of each of the three genes in the absence of N/NO(3)(-) strongly suppresses the key regulators of anthocyanin synthesis PAP1 and PAP2, genes in the anthocyanin-specific part of flavonoid synthesis, as well as cyanidin- but not quercetin- or kaempferol-glycoside production. Conversely, lbd37, lbd38, or lbd39 mutants accumulate anthocyanins when grown in N/NO(3)(-)-sufficient conditions and show constitutive expression of anthocyanin biosynthetic genes. The LBD genes also repress many other known N-responsive genes, including key genes required for NO(3)(-) uptake and assimilation, resulting in altered NO(3)(-) content, nitrate reductase activity/activation, protein, amino acid, and starch levels, and N-related growth phenotypes. The results identify LBD37 and its two close homologs as novel repressors of anthocyanin biosynthesis and N availability signals in general. They also show that, besides being developmental regulators, LBD genes fulfill roles in metabolic regulation.

摘要

氮(N)和硝酸盐(NO₃⁻)本身可以调节植物代谢、生长和发育的许多方面。N/NO₃⁻还会抑制部分次生代谢物的合成,包括花青素的合成。这种抑制的分子组成部分尚不清楚。我们报告说,三个 N/NO₃⁻诱导的 LATERAL ORGAN BOUNDARY DOMAIN(LBD)转录因子基因家族成员(LBD37、LBD38 和 LBD39)作为拟南芥花青素生物合成的负调控因子。在没有 N/NO₃⁻的情况下,这三个基因的过表达强烈抑制花青素合成的关键调节因子 PAP1 和 PAP2、类黄酮合成中花青素特异部分的基因,以及矢车菊素而不是槲皮苷或山奈酚糖苷的产生。相反,在 N/NO₃⁻充足的条件下生长时,lbd37、lbd38 或 lbd39 突变体积累花青素,并表现出花青素生物合成基因的组成型表达。LBD 基因还抑制许多其他已知的 N 响应基因,包括硝酸盐摄取和同化所必需的关键基因,导致硝酸盐含量、硝酸还原酶活性/激活、蛋白质、氨基酸和淀粉水平以及与 N 相关的生长表型发生改变。研究结果表明,LBD37 及其两个紧密同源物是花青素生物合成和一般 N 可用性信号的新的抑制剂。它们还表明,除了作为发育调节剂外,LBD 基因还在代谢调节中发挥作用。

相似文献

引用本文的文献

本文引用的文献

10
Strigolactone inhibition of shoot branching.独脚金内酯对枝条分枝的抑制作用。
Nature. 2008 Sep 11;455(7210):189-94. doi: 10.1038/nature07271.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验