Suppr超能文献

使用期中 Z 值或置信限控制 I 型和 II 型错误概率的无效性期中监测。

Futility interim monitoring with control of type I and II error probabilities using the interim Z-value or confidence limit.

机构信息

The Biostatistics Center, Departments of Epidemiology and Biostatistics, and Statistics, The George Washington University, Rockville 20852, MD, USA.

出版信息

Clin Trials. 2009 Dec;6(6):565-73. doi: 10.1177/1740774509350327. Epub 2009 Nov 23.

Abstract

BACKGROUND

It is highly desirable to terminate a clinical trial early if the emerging data suggests that the experimental treatment is ineffective, or substantially less effective than the level the study was designed to detect. Many studies have used a conditional power calculation as the basis for termination for futility. However, in order to compute conditional power one must posit an assumption about the distribution of the future data yet to be observed, such as that the original design assumptions will apply, or that the future data will have the same treatment effect as that estimated from the current 'trend' in the data. Each such assumption will yield a different conditional power value.

PURPOSE

The assessment of futility is described in terms of the observed quantities alone, specifically the interim Z-value or the interim confidence limit on the magnitude of the treatment effect, such that specified type I and II error probabilities are achieved. No assumption is required regarding the distribution of the future data yet to be observed.

METHODS

Lachin [1] presents a review of futility stopping based on assessment of conditional power and evaluates the statistical properties of a futility stopping rule. These methods are adapted to futility stopping using only the observed data without any assumption about the future data yet to be observed.

RESULTS

The statistical properties of the futility monitoring plan depend specifically on the corresponding boundary value for the interim Z-value. These include the probability of interim stopping under the null or under a specific alternative hypothesis, and the resulting type I and II error probabilities. Thus, the stopping rule can be uniquely specified in terms of a boundary for the interim Z-value. Alternately, the stopping rule can be specified in terms of a boundary on the upper confidence limit for the treatment group effect (favoring treatment). Herein it is shown that this approach is equivalent to a boundary on the test Z-value, from which the operating characteristics of the stopping rule can then be calculated.

LIMITATIONS

While the statistical properties described herein strictly apply to a pre-specified futility boundary, it is also shown that these methods can be applied in an ad-hoc manner. In the event that a sequence of interim assessments for futility is desired, other sequential methods with an outer effectiveness boundary and inner futility boundary would be preferred.

CONCLUSIONS

These methods allow the design of clinical trials that have specified operating characteristics with a pre-specified futility analysis based only on the interim quantities that have been observed. Examples are presented.

摘要

背景

如果出现的数据表明实验治疗无效,或者明显低于研究设计旨在检测到的水平,那么尽早终止临床试验是非常理想的。许多研究都使用条件功效计算作为无效性终止的基础。然而,为了计算条件功效,必须对未来尚未观察到的数据的分布做出假设,例如原始设计假设将适用,或者未来的数据将具有与当前数据“趋势”估计相同的治疗效果。每种假设都会产生不同的条件功效值。

目的

仅根据观察到的数量描述无效性评估,具体来说是中期 Z 值或治疗效果幅度的中期置信限,以实现规定的 I 型和 II 型错误概率。无需对未来尚未观察到的数据的分布做出假设。

方法

Lachin[1] 提出了一种基于条件功效评估的无效性停止的综述,并评估了无效性停止规则的统计性质。这些方法被改编为仅使用观察到的数据进行无效性停止,而无需对未来尚未观察到的数据做出任何假设。

结果

无效性监测计划的统计性质具体取决于中期 Z 值的相应边界值。这些包括在零假设或特定替代假设下的中期停止的概率,以及由此产生的 I 型和 II 型错误概率。因此,可以根据中期 Z 值的边界唯一指定停止规则。或者,可以根据治疗组效果(有利于治疗)的上限置信限的边界来指定停止规则。在此,本文表明,这种方法等效于检验 Z 值的边界,然后可以从该边界计算停止规则的操作特性。

局限性

虽然本文中描述的统计性质严格适用于预先指定的无效性边界,但也表明这些方法可以以特定的方式应用。如果需要对无效性进行一系列中期评估,则首选具有外部有效性边界和内部无效性边界的其他序贯方法。

结论

这些方法允许设计具有特定操作特性的临床试验,这些特性基于仅观察到的中期数量进行预先指定的无效性分析。本文提供了示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验