The Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS, USA.
Nephrol Dial Transplant. 2010 Apr;25(4):1079-87. doi: 10.1093/ndt/gfp605. Epub 2009 Nov 23.
Renal artery stenosis (RAS) causes renal injury partly via microvascular (MV) endothelial dysfunction and damage. Vascular endothelial growth factor (VEGF) is crucial for preservation of microvasculature and promotes vascular proliferation and endothelial repair. We have previously shown that MV rarefaction is associated with decreased VEGF in the kidney exposed to chronic RAS, accompanied by deteriorated renal function and fibrosis. We hypothesized that preserving the renal microcirculation in the stenotic kidney will halt the progression of renal damage.
Unilateral RAS was induced in 16 pigs. In eight, VEGF (0.05 micrograms/kg) was infused intra-renally at the onset of RAS. After 6 weeks, single-kidney haemodynamics and function were assessed using in vivo multi-detector computed tomography (CT). Renal microvessels, angiogenic pathways and morphology were investigated ex vivo using micro-CT, real-time PCR and histology.
Blood pressure and degree of RAS was similar in RAS and RAS + VEGF pigs. Single-kidney renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in RAS compared to Normal (221.1 +/- 46.5 and 29.9 +/- 3.8 vs. 522.5 +/- 60.9 and 49.3 +/- 3.4 mL/min, respectively, P < 0.05), accompanied by decreased cortical MV density and increased renal fibrosis. Pre-emptive administration of VEGF preserved MV architecture, attenuated fibrosis and normalized RBF and GFR (510.8 +/- 50.9 and 39.9.1 +/- 4.1 mL/min, P = not significant vs. Normal).
This study underscores the importance of the renal microcirculation in renovascular disease. Intra-renal administration of VEGF preserved renal MV architecture and function of the stenotic kidney, which in turn preserved renal haemodynamics and function and decreased renal fibrosis. These observations suggest that preventing renal MV loss may be a potential target for therapeutic approaches for patients with chronic renovascular disease.
肾动脉狭窄 (RAS) 通过微血管 (MV) 内皮功能障碍和损伤导致肾损伤。血管内皮生长因子 (VEGF) 对于维持微血管至关重要,并促进血管增殖和内皮修复。我们之前已经表明,在慢性 RAS 暴露的肾脏中,MV 稀疏与肾脏中 VEGF 的减少有关,同时伴有肾功能恶化和纤维化。我们假设在狭窄肾脏中保留肾脏微循环将阻止肾脏损伤的进展。
在 16 头猪中诱导单侧 RAS。在其中 8 头猪中,在 RAS 开始时经肾内输注 VEGF(0.05 微克/千克)。6 周后,使用体内多探测器计算机断层扫描 (CT) 评估单肾血液动力学和功能。使用微 CT、实时 PCR 和组织学研究离体肾脏微血管、血管生成途径和形态。
RAS 和 RAS+VEGF 猪的血压和 RAS 程度相似。与正常相比,RAS 时单肾肾血流量 (RBF) 和肾小球滤过率 (GFR) 降低(分别为 221.1+/-46.5 和 29.9+/-3.8 与 522.5+/-60.9 和 49.3+/-3.4 mL/min,P<0.05),同时伴有皮质 MV 密度降低和肾纤维化增加。预先给予 VEGF 可维持 MV 结构,减轻纤维化,并使 RBF 和 GFR 正常化(510.8+/-50.9 和 39.9.1+/-4.1 mL/min,P=无显著意义 vs. 正常)。
这项研究强调了肾血管疾病中肾脏微循环的重要性。肾内给予 VEGF 可维持狭窄肾脏的 MV 结构和功能,从而维持肾脏血液动力学和功能,减少肾纤维化。这些观察结果表明,防止肾 MV 丢失可能是慢性肾血管疾病患者治疗方法的潜在靶点。