Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America.
PLoS Genet. 2009 Nov;5(11):e1000725. doi: 10.1371/journal.pgen.1000725. Epub 2009 Nov 20.
Paramutation involves homologous sequence communication that leads to meiotically heritable transcriptional silencing. We demonstrate that mop2 (mediator of paramutation2), which alters paramutation at multiple loci, encodes a gene similar to Arabidopsis NRPD2/E2, the second-largest subunit of plant-specific RNA polymerases IV and V. In Arabidopsis, Pol-IV and Pol-V play major roles in RNA-mediated silencing and a single second-largest subunit is shared between Pol-IV and Pol-V. Maize encodes three second-largest subunit genes: all three genes potentially encode full length proteins with highly conserved polymerase domains, and each are expressed in multiple overlapping tissues. The isolation of a recessive paramutation mutation in mop2 from a forward genetic screen suggests limited or no functional redundancy of these three genes. Potential alternative Pol-IV/Pol-V-like complexes could provide maize with a greater diversification of RNA-mediated transcriptional silencing machinery relative to Arabidopsis. Mop2-1 disrupts paramutation at multiple loci when heterozygous, whereas previously silenced alleles are only up-regulated when Mop2-1 is homozygous. The dramatic reduction in b1 tandem repeat siRNAs, but no disruption of silencing in Mop2-1 heterozygotes, suggests the major role for tandem repeat siRNAs is not to maintain silencing. Instead, we hypothesize the tandem repeat siRNAs mediate the establishment of the heritable silent state-a process fully disrupted in Mop2-1 heterozygotes. The dominant Mop2-1 mutation, which has a single nucleotide change in a domain highly conserved among all polymerases (E. coli to eukaryotes), disrupts both siRNA biogenesis (Pol-IV-like) and potentially processes downstream (Pol-V-like). These results suggest either the wild-type protein is a subunit in both complexes or the dominant mutant protein disrupts both complexes. Dominant mutations in the same domain in E. coli RNA polymerase suggest a model for Mop2-1 dominance: complexes containing Mop2-1 subunits are non-functional and compete with wild-type complexes.
拟突变涉及同源序列通讯,导致减数分裂遗传转录沉默。我们证明,改变多个位点拟突变的 mop2(拟突变 2 的介导因子)编码的基因类似于拟南芥 NRPD2/E2,即植物特异性 RNA 聚合酶 IV 和 V 的第二大亚基。在拟南芥中,Pol-IV 和 Pol-V 在 RNA 介导的沉默中起主要作用,并且 Pol-IV 和 Pol-V 之间共享一个第二大亚基。玉米编码三个第二大亚基基因:所有三个基因都有可能编码具有高度保守聚合酶结构域的全长蛋白,并且每个基因都在多个重叠组织中表达。从正向遗传学筛选中分离出 mop2 的隐性拟突变突变,表明这三个基因的功能冗余有限或不存在。潜在的替代 Pol-IV/Pol-V 样复合物可能为玉米提供比拟南芥更多样化的 RNA 介导转录沉默机制。当 mop2 杂合时,mop2-1 会破坏多个位点的拟突变,而当 mop2-1 纯合时,先前沉默的等位基因仅被上调。b1 串联重复 siRNA 的显著减少,但 mop2-1 杂合体中沉默没有被破坏,这表明串联重复 siRNA 的主要作用不是维持沉默。相反,我们假设串联重复 siRNA 介导可遗传的沉默状态的建立——这一过程在 mop2-1 杂合体中完全被破坏。在高度保守的结构域(从大肠杆菌到真核生物)中发生单个核苷酸变化的显性 mop2-1 突变,破坏了 siRNA 生物发生(类似于 Pol-IV)和潜在的下游过程(类似于 Pol-V)。这些结果表明,野生型蛋白是两种复合物的亚基,或者显性突变蛋白破坏了两种复合物。大肠杆菌 RNA 聚合酶中相同结构域的显性突变表明了 mop2-1 显性的模型:含有 mop2-1 亚基的复合物没有功能,并与野生型复合物竞争。