Hughes-Oliver Jacqueline M, Heo Tae-Young, Ghosh Sujit K
Department of Statistics, North Carolina State University, Raleigh, NC, 27695-8203, USA.
Environmetrics. 2008 Sep 26;20(5):575-594. doi: 10.1002/env.957.
We suggest a parametric modeling approach for nonstationary spatial processes driven by point sources. Baseline near-stationarity, which may be reasonable in the absence of a point source, is modeled using a conditional autoregressive (CAR) Markov random field. Variability due to the point source is captured by our proposed autoregressive point source (ARPS) model. Inference proceeds according to the Bayesian hierarchical paradigm, and is implemented using Markov chain Monte Carlo (MCMC) methods. The parametric approach allows a formal test of effectiveness of the point source. Application is made to a real dataset on electric potential measurements in a field containing a metal pole and the finding is that our approach captures the pole's impact on small-scale variability of the electric potential process.
我们针对由点源驱动的非平稳空间过程提出了一种参数化建模方法。在不存在点源的情况下可能合理的基线近平稳性,使用条件自回归(CAR)马尔可夫随机场进行建模。由点源引起的变异性由我们提出的自回归点源(ARPS)模型捕获。推理按照贝叶斯层次范式进行,并使用马尔可夫链蒙特卡罗(MCMC)方法实现。参数化方法允许对点源的有效性进行正式检验。将该方法应用于一个包含金属杆的场地中电位测量的真实数据集,结果发现我们的方法捕捉到了杆对电位过程小尺度变异性的影响。