Neubig M, Destexhe A, Sejnowski T J
Computational Neurobiology Laboratory, Salk Institute for Biological Studies, Howard Hughes Medical Institute, La Jolla, CA 92037, USA.
Thalamus Relat Syst. 2003 Apr 1;2(2):153-168. doi: 10.1016/S1472-9288(03)00008-6.
Broad amplitude variability and skewed distributions are characteristic features of quantal synaptic currents (minis) at central synapses. The relative contributions of the various underlying sources are still debated. Through computational models of thalamocortical neurons, we separated intra- from extra-synaptic sources. Our simulations indicate that the external factors of local input resistance and dendritic filtering generate equally small amounts of negatively skewed synaptic variability. The ability of these two factors to reduce positive skew increased as their contribution to variability increased, which in control trials for morphological, biophysical, and experimental parameters never exceeded 10% of the range. With these dendritic factors ruled out, we tested multiple release models, which led to distributions with clearly non-physiological multiple peaks. We conclude that intra-synaptic organization is the primary determinant of synaptic variability in thalamocortical neurons and, due to extra-synaptic mechanisms, is more potent than the data suggested. Thalamortical neurons, especially in rodents, constitute a remarkably favorable system for molecular genetic studies of synaptic variability and its functional consequence.
宽幅度变异性和偏态分布是中枢突触处量子突触电流(微小突触后电流)的特征。各种潜在来源的相对贡献仍存在争议。通过丘脑皮质神经元的计算模型,我们将突触内和突触外来源区分开来。我们的模拟表明,局部输入电阻和树突滤波的外部因素产生的负向偏态突触变异性数量同样少。随着这两个因素对变异性的贡献增加,它们减少正向偏态的能力也增强,在形态学、生物物理学和实验参数的对照试验中,这种贡献从未超过范围的10%。排除这些树突因素后,我们测试了多种释放模型,这些模型导致了具有明显非生理性多个峰值的分布。我们得出结论,突触内组织是丘脑皮质神经元突触变异性的主要决定因素,并且由于突触外机制,其作用比数据所显示的更强。丘脑皮质神经元,尤其是在啮齿动物中,构成了一个非常有利于对突触变异性及其功能后果进行分子遗传学研究的系统。