Suppr超能文献

Agonist-induced endocytosis and signal generation in adrenal glomerulosa cells. A potential mechanism for receptor-operated calcium entry.

作者信息

Hunyady L, Merelli F, Baukal A J, Balla T, Catt K J

机构信息

Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892.

出版信息

J Biol Chem. 1991 Feb 15;266(5):2783-8.

PMID:1993657
Abstract

The relationships between receptor-mediated endocytosis and the generation of intracellular signals were analyzed in angiotensin II (AII)-stimulated adrenal glomerulosa cells. In cells equilibrated with 125I-AII analogs at 4 degrees C, specifically bound agonist but not antagonist AII derivatives were rapidly internalized at 37 degrees C. AII-induced internalization was not influenced by the presence or absence of extracellular Ca2+ but was inhibited by treatment with phenylarsine oxide (PAO) or by arresting coated pit formation with hypotonic shock and potassium depletion. Inhibition of internalization by PAO was prevented by the bifunctional sulfhydryl reagent dithiothreitol but only partially reversed by mercaptoethanol, and readdition of K+ restored internalization in K(+)-depleted cells. Treatment with PAO did not impair the initial AII-induced elevations of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and cytoplasmic calcium [( Ca2+]i) but reduced the sustained phase of the Ins(1,4,5)P3 response by 85% and abolished the second phase of the cytoplasmic Ca2+ response; these responses were restored by concomitant treatment with dithiothreitol. Inhibition of AII-receptor internalization by K+ depletion also caused selective loss of the sustained phase of the AII-induced Ca2+ response. Thus, blockade of AII-receptor internalization has similar effects as extracellular Ca2+ deficiency, which abolishes the sustained but not the early AII-induced increases in Ins(1,4,5)P3 production and [Ca2+]i. The close correlations between AII-induced internalization and the generation of Ins(1,4,5)P3 and [Ca2+]i responses suggest that endocytosis of the agonist-receptor complex is necessary to maintain the production of these intracellular signals. It is also possible that receptor-operated vesicular uptake of extracellular Ca2+ makes a significant contribution to the sustained [Ca2+]i responses of certain agonist-stimulated target cells.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验