Liao Wei, Mantini Dante, Zhang Zhiqiang, Pan Zhengyong, Ding Jurong, Gong Qiyong, Yang Yihong, Chen Huafu
Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
Biol Cybern. 2010 Jan;102(1):57-69. doi: 10.1007/s00422-009-0350-5. Epub 2009 Nov 25.
The human brain has been documented to be spatially organized in a finite set of specific coherent patterns, namely resting state networks (RSNs). The interactions among RSNs, being potentially dynamic and directional, may not be adequately captured by simple correlation or anticorrelation. In order to evaluate the possible effective connectivity within those RSNs, we applied a conditional Granger causality analysis (CGCA) to the RSNs retrieved by independent component analysis (ICA) from resting state functional magnetic resonance imaging (fMRI) data. Our analysis provided evidence for specific causal influences among the detected RSNs: default-mode, dorsal attention, core, central-executive, self-referential, somatosensory, visual, and auditory networks. In particular, we identified that self-referential and default-mode networks (DMNs) play distinct and crucial roles in the human brain functional architecture. Specifically, the former RSN exerted the strongest causal influence over the other RSNs, revealing a top-down modulation of self-referential mental activity (SRN) over sensory and cognitive processing. In quite contrast, the latter RSN was profoundly affected by the other RSNs, which may underlie an integration of information from primary function and higher level cognition networks, consistent with previous task-related studies. Overall, our results revealed the causal influences among these RSNs at different processing levels, and supplied information for a deeper understanding of the brain network dynamics.
已有文献记载,人类大脑在一组有限的特定连贯模式中进行空间组织,即静息态网络(RSN)。RSN之间的相互作用可能是动态且有方向的,简单的相关性或反相关性可能无法充分捕捉到这些作用。为了评估这些RSN内可能存在的有效连接性,我们对通过独立成分分析(ICA)从静息态功能磁共振成像(fMRI)数据中提取的RSN应用了条件格兰杰因果分析(CGCA)。我们的分析为检测到的RSN之间的特定因果影响提供了证据:默认模式、背侧注意、核心、中央执行、自我参照、体感、视觉和听觉网络。特别是,我们发现自我参照网络和默认模式网络(DMN)在人类大脑功能结构中发挥着独特且关键的作用。具体而言,前一个RSN对其他RSN施加了最强的因果影响,揭示了自我参照心理活动(SRN)对感觉和认知加工的自上而下的调节。相比之下,后一个RSN受到其他RSN的深刻影响,这可能是初级功能和高级认知网络信息整合的基础,与先前与任务相关的研究一致。总体而言,我们的结果揭示了这些RSN在不同处理水平之间的因果影响,并为更深入理解大脑网络动态提供了信息。