ACD/Labs, Inc., A.Mickeviciaus g. 29, LT-08117 Vilnius, Lithuania.
Chem Biodivers. 2009 Nov;6(11):2101-6. doi: 10.1002/cbdv.200900078.
This article briefly introduces the results of in silico prediction of the most probable metabolism sites for the human cytochrome P450 3A4 and 2D6 isoforms. Ligand-based QSAR models have been developed using a novel GALAS modeling approach, and provide probabilities of being a target of CYP3A4 or CYP2D6 for any atom in a molecule. The GALAS-model development methodology allows evaluation of the reliability of predictions in the form of estimated prediction Reliability Indices (RIs). For all the models considered in this study, the number of misclassifications and inconclusive results was reduced significantly when only predictions of high quality (RI>0.5) were taken into account, demonstrating that RI reflects accuracy of prediction. The applicability domain of regioselectivity models is shown to be easily expandable to cover compound classes of interest to the user. The results obtained so far show promising perspectives for the utilization of the GALAS modeling in the analysis of regioselectivity for other important biotransformation enzymes--a work currently in progress.
本文简要介绍了计算机预测人细胞色素 P450 3A4 和 2D6 同工酶最可能的代谢部位的结果。使用一种新的 GALAS 建模方法开发了基于配体的 QSAR 模型,为分子中的任何原子提供了成为 CYP3A4 或 CYP2D6 靶标的可能性。GALAS 模型开发方法允许以估计的预测可靠性指数 (RI) 的形式评估预测的可靠性。对于本研究中考虑的所有模型,当仅考虑高质量预测 (RI>0.5) 时,误分类和不确定结果的数量显著减少,表明 RI 反映了预测的准确性。还表明,区域选择性模型的适用域很容易扩展到包含用户感兴趣的化合物类。迄今为止获得的结果表明,在利用 GALAS 建模分析其他重要生物转化酶的区域选择性方面具有广阔的前景,目前正在进行这方面的工作。