KemKom, 1215 Ursulines Avenue, New Orleans, LA 70116, USA.
Chemistry. 2010 Jan 18;16(3):976-87. doi: 10.1002/chem.200902459.
The role of electrostatic interactions in covalent bonding of heavier main group elements has been evaluated for the exemplary set of molecules X(2)H(2) (X=C, Si, Ge, Sn, Pb). Density functional calculations at PBE/QZ4P combined with energy decomposition procedures and kinetic energy density analyses have been carried out for a variety of different structures, and two factors are responsible for the fact that the heavier homologues of acetylene exhibit doubly hydrogen-bridged local minimum geometries. For one, the extended electronic core with at least one set of p orbitals of the Group 14 elements beyond the first long period is responsible for favorable electrostatic E-H interactions. This electrostatic interaction is the strongest for the isomer with two bridging hydrogen atoms. Secondly, the H substituent does not posses an electronic core or any bonding-inactive electrons, which would give rise to a significant amount of Pauli repulsion, disfavoring the doubly bridged isomer. When one of two criteria is not met the unusual doubly bridged structure no longer constitutes the energetically preferred geometry. The bonding model is validated in calculations of different structures of Si(2)(CH(3))(2).
已经评估了静电相互作用在较重主族元素的共价键合中的作用,研究对象为 X(2)H(2)(X=C、Si、Ge、Sn、Pb)的典型分子集。使用 PBE/QZ4P 密度泛函计算,并结合能量分解程序和动能密度分析,对各种不同的结构进行了计算,有两个因素导致了乙炔的较重同系物表现出双氢桥接的局部最小几何形状。一方面,第 14 族元素的扩展电子核至少具有一套超出第一长周期的 p 轨道,有利于有利的静电 E-H 相互作用。对于具有两个桥接氢原子的异构体,这种静电相互作用最强。其次,H 取代基没有电子核或任何非键合电子,这将导致大量的 Pauli 排斥,不利于双桥接异构体。当两个标准中不满足一个标准时,不寻常的双桥接结构不再构成能量上优先的几何形状。在 Si(2)(CH(3))(2)的不同结构的计算中验证了该键合模型。