Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298-0032, USA.
Brief Bioinform. 2010 Mar;11(2):244-52. doi: 10.1093/bib/bbp055. Epub 2009 Nov 25.
Extensive methodological research has been conducted to improve gene expression summary methods. However, in addition to quantitative gene expression summaries, most platforms, including all those examined in the MicroArray Quality Control project, provide a qualitative detection call result for each gene on the platform. These detection call algorithms are intended to render an assessment of whether or not each transcript is reliably measured. In this paper, we review uses of these qualitative detection call results in the analysis of microarray data. We also review the detection call algorithms for two widely used gene expression microarray platforms, Affymetrix GeneChips and Illumina BeadArrays, and more clearly formalize the mathematical notation for the Illumina BeadArray detection call algorithm. Both algorithms result in a P-value which is then used for determining the qualitative detection calls. We examined the performance of these detection call algorithms and default parameters by applying the methods to two spike-in datasets. We show that the default parameters for qualitative detection calls yield few absent calls for high spike-in concentrations. When genes of interest are expected to be present at very low concentrations, spike-in datasets can be useful for appropriately adjusting the tuning parameters for qualitative detection calls.
已经进行了广泛的方法学研究,以改进基因表达摘要方法。然而,除了定量的基因表达摘要外,大多数平台,包括 MicroArray Quality Control 项目中检查的所有平台,都为平台上的每个基因提供定性的检测调用结果。这些检测调用算法旨在对每个转录本是否可以可靠地测量进行评估。在本文中,我们回顾了这些定性检测调用结果在微阵列数据分析中的用途。我们还回顾了两种广泛使用的基因表达微阵列平台(Affymetrix GeneChips 和 Illumina BeadArrays)的检测调用算法,并更清楚地为 Illumina BeadArray 检测调用算法形式化数学符号。这两个算法都会产生一个 P 值,然后用于确定定性检测调用。我们通过将这些方法应用于两个 Spike-in 数据集来检查这些检测调用算法和默认参数的性能。我们表明,高 Spike-in 浓度下,默认的定性检测调用参数产生的缺失调用很少。当感兴趣的基因预计以非常低的浓度存在时, Spike-in 数据集可用于适当调整定性检测调用的调谐参数。