Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
Am J Physiol Heart Circ Physiol. 2010 Feb;298(2):H515-23. doi: 10.1152/ajpheart.01306.2008. Epub 2009 Nov 25.
Vascular endothelium is covered with an extensive mesh of glycocalyx constituents, which acts like an effective barrier up to several micrometers thick that shields the luminal surface of the vasculature from direct exposure to flowing blood. Many studies report that various enzymatic and pharmaceutical challenges are able to increase glycocalyx porosity, resulting in farther permeation of plasma macromolecules and greater access of red blood cells into glycocalyx domain. Attenuation of glycocalyx barrier properties therefore potentially increases the amount of blood that effectively occupies available microvascular volume. We tested in the present study whether attenuation of coronary glycocalyx barrier properties actually increases coronary blood volume and whether such changes would be noticeable during measurements of coronary flow reserve using adenosine. In anesthetized goats (n = 6) with cannulated left main coronary artery that were perfused under controlled pressure, coronary blood volume was measured via the indicator-dilution technique using high-molecular-weight (2,000 kDa) dextrans as plasma tracer and labeled red blood cells as red blood cell tracer. Coronary blood volume was determined at baseline and during intracoronary infusion of adenosine causing maximal vasodilation (0.2-0.6 mg.kg(-1).h(-1)) before and after intracoronary hyaluronidase treatment (170,000 units) of the glycocalyx. With an intact glycocalyx, coronary blood volume was 18.9 +/- 1.1 ml/100 g heart tissue at baseline, which increased to 26.3 +/- 2.7 ml/100 g after hyaluronidase treatment of the coronary glycocalyx. Maximal vasodilation by administration of adenosine further increased coronary blood volume to 33.9 +/- 6.8 ml/100 g, a value not different from the maximal coronary blood volume of 33.2 +/- 5.3 ml/100 g obtained by administration of adenosine in the absence of hyaluronidase treatment. Adenosine-induced increases in coronary conductance were not affected by hyaluronidase treatment. We conclude that acute attenuation of glycocalyx barrier properties increases coronary blood volume by approximately 40%, which is of similar magnitude as additional changes in coronary blood volume during subsequent maximal vasodilation with adenosine. Furthermore, maximal coronary blood volume following administration of adenosine was similar with and without prior hyaluronidase degradation of the glycocalyx, suggesting that adenosine and hyaluronidase potentially increase glycocalyx porosity to a similar extent. Hyaluronidase-mediated changes in coronary blood volume did not affect baseline and adenosine-induced increases in coronary conductance, demonstrating that measurements of coronary flow reserve are insufficient to detect impairment of coronary blood volume recruitment in conditions of damaged glycocalyx.
血管内皮细胞被广泛的糖萼成分网格覆盖,其作用类似于一个有效的屏障,厚度可达数微米,可以防止血管内腔表面直接暴露于流动的血液中。许多研究报告表明,各种酶和药物挑战能够增加糖萼的通透性,导致更多的血浆大分子渗透和更多的红细胞进入糖萼域。因此,糖萼屏障特性的衰减可能会增加有效占据可用微血管容积的血液量。我们在本研究中测试了,冠状动脉糖萼屏障特性的衰减是否实际上会增加冠状动脉血流量,以及在使用腺苷测量冠状动脉血流储备时,这种变化是否会变得明显。在接受麻醉的山羊(n=6)中,用插管的左主冠状动脉进行灌注,在受控压力下进行,使用高分子量(2000kDa)葡聚糖作为血浆示踪剂和标记的红细胞作为红细胞示踪剂,通过指示剂稀释技术测量冠状动脉血流量。在冠状动脉内给予腺苷(0.2-0.6mg.kg(-1).h(-1))引起最大血管扩张之前和之后,在冠状动脉糖萼内给予透明质酸酶(170000 单位)治疗,确定基础状态和基础状态下的冠状动脉血流量。在完整的糖萼中,基础状态下冠状动脉血流量为 18.9 +/- 1.1ml/100g 心脏组织,在冠状动脉糖萼内给予透明质酸酶治疗后增加到 26.3 +/- 2.7ml/100g。给予腺苷后最大血管扩张进一步将冠状动脉血流量增加到 33.9 +/- 6.8ml/100g,与给予腺苷但不给予透明质酸酶治疗时获得的 33.2 +/- 5.3ml/100g 最大冠状动脉血流量没有差异。透明质酸酶治疗不影响腺苷诱导的冠状动脉传导增加。我们的结论是,糖萼屏障特性的急性衰减可使冠状动脉血流量增加约 40%,这与随后给予腺苷时冠状动脉血流量的额外变化幅度相似。此外,给予腺苷后最大冠状动脉血流量在没有预先进行糖萼透明质酸酶降解的情况下是相似的,这表明腺苷和透明质酸酶可能以相似的程度增加糖萼的通透性。冠状动脉血流量的透明质酸酶介导变化不影响基础状态和腺苷诱导的冠状动脉传导增加,表明在糖萼受损的情况下,测量冠状动脉血流储备不足以检测到冠状动脉血容量募集的损害。