Li Huihui, Yuan Gu
Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Environmental Science, Nanjing Normal University, Nanjing, 210097, China.
Eur J Mass Spectrom (Chichester). 2009;15(6):731-7. doi: 10.1255/ejms.1033.
The collision-dissociation behavior of two novel dimeric G-quadruplexes of HIV-1 integrase inhibitors and their noncovalent complex ions with a perylene derivative (Tel03), polyamides (ImImImbetaDp and PyPyPybetaDp) was investigated by tandem-in-time electrospray ionization mass spectrometry (ESI-MS). It was found that the dimeric ion loses five ammonium ions one by one at activation energy of 10%, so the loss of NH(4)(+) is the predominant fragmentation pathway at lower collision energy. When the activation amplitude is increased to 16%, the loss of guanine nucleobases from backbones of the oligonucleotide is the predominant fragmentation pathway. And the stability of the complex ion of the dimeric G-quadruplex and Tel03 is higher than that of ImImImbetaDp and PyPyPybetaDp. The results of the MS/MS spectra of the complex ion indicated that Tel03 binding molecule favor the stabilization of the novel G-quadruplex structure.