AstraZeneca R&D Mölndal, SE-431 83 Mölndal, Sweden.
Stat Med. 2010 Mar 30;29(7-8):743-59. doi: 10.1002/sim.3790.
Confirmatory clinical trials comparing the efficacy of a new treatment with an active control typically aim at demonstrating either superiority or non-inferiority. In the latter case, the objective is to show that the experimental treatment is not worse than the active control by more than a pre-specified non-inferiority margin. We consider two classes of group-sequential designs that combine the superiority and non-inferiority objectives: non-adaptive designs with fixed group sizes and adaptive designs where future group sizes may be based on the observed treatment effect. For both classes, we derive group-sequential designs meeting error probability constraints that have the lowest possible expected sample size averaged over a set of values of the treatment effect. These optimized designs provide an efficient means of reducing expected sample size under a range of treatment effects, even when the separate objectives of proving superiority and non-inferiority would require quite different fixed sample sizes. We also present error spending versions of group-sequential designs that are easily implementable and can handle unpredictable group sizes or information levels. We find the adaptive choice of group sizes to yield some modest efficiency gains; alternatively, expected sample size may be reduced by adding another interim analysis to a non-adaptive group-sequential design.
验证性临床试验旨在比较新疗法与对照疗法的疗效,通常旨在证明新疗法具有优越性或非劣效性。在后一种情况下,目的是通过预先指定的非劣效性边界证明实验性治疗并不比对照治疗差。我们考虑了两种结合了优越性和非劣效性目标的分组序贯设计:固定分组大小的非适应性设计和未来分组大小可能基于观察到的治疗效果的适应性设计。对于这两类设计,我们推导了满足误差概率约束的分组序贯设计,这些设计的平均预期样本量在一组治疗效果值下尽可能低。这些优化设计提供了一种有效的方法,可在一系列治疗效果下减少预期样本量,即使证明优越性和非劣效性的单独目标需要完全不同的固定样本量。我们还提出了易于实施且可以处理不可预测的分组大小或信息水平的分组序贯设计的误差分配版本。我们发现,分组大小的适应性选择会带来一些适度的效率提高;或者,可以通过在非适应性分组序贯设计中添加另一个中期分析来减少预期样本量。